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ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for automated thermodynamic database
development within the CALPHAD method.

The ESPEI package is based on a fork of pycalphad-fitting and uses pycalphad for calculating Gibbs free energies of
thermodynamic models. The implementation for ESPEI involves first fitting single-phase data by calculating parame-
ters in thermodynamic models that are linearly described by the single-phase input data. Then Markov Chain Monte
Carlo (MCMC) is used to optimize the candidate models from the single-phase fitting to multi-phase zero-phase frac-
tion data. Single-phase and multi-phase fitting methods are described in Chapter 3 of Richard Otis’s thesis.

The benefit of this approach is the automated, simultaneous fitting for many parameters that yields uncertainty quan-
tification, as shown in Otis and Liu High-Throughput Thermodynamic Modeling and Uncertainty Quantification for
ICME. Jom 69, (2017).

The name and idea of ESPEI are originally based off of Shang, Wang, and Liu, ESPEI: Extensible, Self-optimizing
Phase Equilibrium Infrastructure for Magnesium Alloys Magnes. Technol. 2010 617-622 (2010).

Fig. 1: Cu-Mg phase diagram from a database created with and optimized by ESPEI. See the Cu-Mg Example.
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CHAPTER 1

Installation

Creating a virual environment is highly recommended. ESPEI does require any special compiler, but several depen-
dencies do. Therefore it is suggested to install ESPEI from conda-forge

conda config --add channels conda-forge
conda create -n my_env espei

Alternatively, ESPEI is available from PyPI

pip install espei

or install in develop mode from source

git clone https://github.com/phasesresearchlab/espei.git
cd espei
pip install -e .

3
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CHAPTER 2

Usage

ESPEI has two different fitting modes: single-phase and multi-phase fitting. You can run either of these modes or both
of them sequentially.

To run either of the modes, you need to have a phase models file that describes the phases in the system using the
standard CALPHAD approach within the compound energy formalism. You also need to describe the data that ESPEI
should fit to. You will need single-phase and multi-phase data for a full run. Fit settings and all datasets are stored
as JSON files and described in detail at the Gathering input data page. All of your input datasets should be validated
by running espei --check-datasets my-input-datasets, where my-input-datasets is a folder
of all your JSON files.

The main output result is going to be a database (defaults to out.tdb), an array of the steps in the MCMC chain
(defaults to chain.npy), and the an array of the log-probabilities for each iteration and chain (defaults to lnprob.
npy).

Single-phase only

If you have only heat capacity, entropy and enthalpy data and mixing data (e.g. from first-principles), you may want
to see the starting point for your MCMC calculation.

Create an input file called espei-in.yaml.

system:
phase_models: my-phases.json
datasets: my-input-datasets

generate_parameters:
excess_model: linear
ref_state: SGTE91

Then ESPEI can be run by running

espei --input espei-in.yaml
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Multi-phase only

If you have a database already and just want to do a multi-phase fitting, you can specify a starting TDB file (named
my-tdb.tdb) with

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
mcmc_steps: 1000
input_db: my-tdb.tdb

The TDB file you input must have all of the degrees of freedom you want as FUNCTIONs with names beginning with
VV.

Restart from previous run-phase only

If you’ve run an MCMC fitting already in ESPEI and have a chain file called my-previous-chain.npy , then
you can resume the calculation with the following input file

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
mcmc_steps: 1000
input_db: my-tdb.tdb
restart_chain: my-previous-chain.npy

Full run

A minimal full run of ESPEI with single phase fitting and MCMC fitting is done by the following

system:
phase_models: my-phases.json
datasets: my-input-data

generate_parameters:
excess_model: linear
ref_state: SGTE91

mcmc:
mcmc_steps: 1000

Input Customization

ESPEI lets you control many aspects of your calculations with the input files shown above. See Writing ESPEI input
for a full description of all possible inputs.
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FAQ

Q: There is an error in my JSON files

A: Common mistakes are using single quotes instead of the double quotes required by JSON files. Another common
source of errors is misaligned open/closing brackets.

Many mistakes are found with ESPEI’s check-datasets utility. Run espei check-datasets
my-input-datasets on your directory my-input-datasets.

Q: How do I analyze my results?

A: By default, ESPEI will create chain.npy and lnprob.npy for the MCMC chain at the end of your run
and according to the save interval (defaults to every 20 iterations). These are created from arrays via numpy.
save() and can thus be loaded with numpy.load(). Note that the arrays are preallocated with zeros. These
filenames and settings can be changed using in the input file. You can then use these chains and corresponding log-
probabilities to make corner plots, calculate autocorrelations, find optimal parameters for databases, etc.. Finally, you
can use py:mod:espei.plot functions such as multiplot to plot phase diagrams with your input equilibria data and
plot_parameters to compare single-phase data (e.g. formation and mixing data) with the properties calculated
with your database.

Q: Can I run ESPEI on a supercomputer supporting MPI?

A: Yes! ESPEI has MPI support. To use ESPEI with MPI, you simply call ESPEI in the same way as above with mpirun
or whichever MPI software you use. You also must indicate to ESPEI that it should create an MPI scheduler by setting
the input option scheduler: MPIPool in the mcmc heading. Be aware that mpi4py must be compiled with an
MPI-enabled compiler, see the mpi4py installation instructions.

2.6. FAQ 7
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CHAPTER 3

Module Hierarchy

• fit.py is the main entry point

• paramselect.py is where all of the fitting happens. This is the core.

• core_utils.py contains specialized utilities for ESPEI.

• utils.py are utilities with reuse potential outside of ESPEI.

• plot.py holds plotting functions

9



ESPEI Documentation, Release 0.1.3

10 Chapter 3. Module Hierarchy



CHAPTER 4

License

ESPEI is MIT licensed. See LICENSE.

What’s New

0.3 (2017-09-20)

• ESPEI input is now described by a file. This change is breaking. Old command line arguments are not
supported. See Writing input files for a full description of all the inputs.

• New input options are supported, including modifying the number of chains and standard deviation from the
mean

• ESPEI is now available on conda-forge

• TinyDB 2 support is dropped in favor of TinyDB 3 for conda-forge deployment

• Allow for restarting previous mcmc calculations with a trace file

• Add Cu-Mg example to documentation

0.2.1 (2017-08-17)

Fixes to the 0.2 release plotting interface

• multiplot is renamed from multi_plot, as in docs.

• Fixed an issue where phases in datasets, but not in equilibrium were not plotted by dataplot and raised an error.

11
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0.2 (2017-08-15)

• New multiplot interface for convienent plotting of phase diagrams + data. dataplot function underlies
key data plotting features and can be used with eqplot. See their API docs for examples. Will break existing
code using multiplot.

• MPI support for local/HPC runs. Only single node runs are explictly supported currently. Use
--scheduler='MPIPool' command line option. Requires mpi4py.

• Default debug reporting of acceptance ratios

• Option (and default) to output the log probability array matching the trace. Use --probfile option to control.

• Optimal parameters are now chosen based on lowest error in chain.

• Bug fixes including

– py2/3 compatibiltiy

– unicode datasets

– handling of singular matrix errors from pycalphad’s equilibrium

– reporting of failed conditions

0.1.5 (2017-08-02)

• Significant error checking of JSON inputs.

• Add new --check-datasets option to check the datasets at path. It should be run before you run ESPEI
fittings. All errors must be resolved before you run.

• Move the espei script module from fit.py to run_espei.py.

• Better docs building with mocking

• Google docstrings are now NumPy docstrings

0.1.4 (2017-07-24)

• Documentation improvements for usage and API docs

• Fail fast on JSON errors

0.1.3 (2017-06-23)

• Fix bad version pinning in setup.py

• Explicitly support Python 2.7

0.1.2 (2017-06-23)

• Fix dask incompatibilty due to new API usage

0.1.1 (2017-06-23)

• Fix a bug that caused logging to raise if bokeh isn’t installed

12 Chapter 4. License
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0.1 (2017-06-23)

ESPEI is now a package! New features include

• Fork https://github.com/richardotis/pycalphad-fitting

• Use emcee for MCMC fitting rather than pymc

• Support single-phase only fitting

• More control options for running ESPEI from the command line

• Better support for incremental saving of the chain

• Control over output with logging over printing

• Significant code cleanup

• Better usage documentation

Cu-Mg Example

The Cu-Mg binary system is an interesting and simple binary subsystem for light metal alloys. It has been mod-
eled in the literature by Coughanowr et al.1, Zou and Chang2 and Zhou et al.3 and was featured as a case study in
Computational Thermodynamics The Calphad Method by Lukas, Fries, & Sundman4.

Here we will combine density functional theory and experimental calculations of single-phase data to generate a
first-principles phase diagram. Then that database will be used as a starting point for a Markov Chain Monte Carlo
(MCMC) Bayesian optimization of the parameters to fit zero-phase fraction data.

Input data

All of the input data for ESPEI is stored in a public ESPEI-datasets repository on GitHub. The data in this repository
is Creative Commons Attribution 4.0 (CC-BY-4.0) licensed and may be used, commercialized or reused freely.

In order to run ESPEI with the data in ESPEI-datasets, you should clone this repository to your computer. Files
referred to throughout this tutorial are found in the CU-MG folder. The input files will be very breifly explained in this
tutorial so that you are able to know their use. A more detailed description of the files is found on the Gathering input
data page.

If you make changes or additions, you are encouraged to share these back to the ESPEI-datasets repository so that
others may benefit from this data as you have. You may then add your name to the CONTRIBUTORS file as described
in the README.

Phases and CALPHAD models

The Cu-Mg system contains five stable phases: Liquid, disordered fcc and hcp, the C15 Laves phase and the CuMg2
phase. All of these phases will be modeled as solution phases, except for CuMg2, which will be represented as a
stoichiometric compound. The phase names and corresponding sublattice models are as follows:

1 Coughanowr, C. A., Ansara, I., Luoma, R., Hamalainen, M. & Lukas, H. L. Assessment of the Cu-Mg system. Zeitschrift f{ü}r Met. 82,
574–581 (1991).

2 Zuo, Y. U. E. & Chang, Y. A. Thermodynamic calculation of the Mg-Cu phase diagram. Zeitschrift f{ü}r Met. 84, 662–667 (1993).
3 Zhou, S. et al. Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System. J. Phase Equilibria Diffus. 28,

158–166 (2007). doi:10.1007/s11669-007-9022-0
4 Lukas, H., Fries, S. G. & Sundman, B. Computational Thermodynamics The Calphad Method. (Cambridge University Press, 2007).

doi:10.1017/CBO9780511804137
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LIQUID: (CU, MG)1
FCC_A1: (CU, MG)1 (VA)1
HCP_A3: (CU, MG)1 (VA)1
LAVES_C15: (CU, MG)2 (CU, MG)1
CUMG2: (CU)1 (MG)2

These phase names and sublattice models are described in the JSON file Cu-Mg-input.json file as seen below

{
"components": ["CU", "MG", "VA"],
"refdata": "SGTE91",
"phases": {

"LIQUID" : {
"sublattice_model": [["CU", "MG"]],
"sublattice_site_ratios": [1]

},
"CUMG2": {

"sublattice_model": [["CU"], ["MG"]],
"sublattice_site_ratios": [1, 2]

},
"FCC_A1": {

"sublattice_model": [["CU", "MG"], ["VA"]],
"sublattice_site_ratios": [1, 1]

},
"HCP_A3": {

"sublattice_site_ratios": [1, 0.5],
"sublattice_model": [["CU", "MG"], ["VA"]]

},
"LAVES_C15": {

"sublattice_site_ratios": [2, 1],
"sublattice_model": [["CU", "MG"], ["CU", "MG"]]

}
}

}

Of note is that we will be using the reference state defined by SGTE91. This reference state is implemented
in pycalphad.refdata. Other reference states can be supported in principle, but must be implemented in
pycalphad.refdata.

ESPEI

ESPEI has two steps: single-phase fitting and multi-phase fitting. The single-phase fitting step uses experimental and
DFT data for derivatives of the Gibbs free energy (𝐶𝑃 , 𝐻, 𝑆) for a phase and for the mixing energies within sublattices
for each phase to select and fit parameters. The multi-phase fitting uses MCMC to optimize the parameters selected
and calculated from the single-phase fitting. These steps can be performed together, or separately. For clarity, we
will preform these steps separately. The next two sections are devoted to describing ESPEI’s single-phase fitting and
MCMC optimization.

Though it should be no problem for this case, since the data has already been used, you should get in the habit of
checking datasets before running ESPEI. ESPEI has a tool to help find and report problems in your datasets. This
is automatically run when you load the datasets, but will fail on the first error. Running the following commmand
(assuming from here on that you are in the CU-MG folder from ESPEI-datasets):

espei --check-datasets input-data

The benefit of the this approach is that all of the datasets will be checked and reported at once. If there are any

14 Chapter 4. License
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failures, a list of them will be reported with the two main types of errors being JSONError, for which you should
read the JSON section of Gathering input data, or DatasetError, which are related to the validity of your datasets
scientifically (maching conditions and values shape, etc.). The DatasetError messages are designed to be clear,
so please open an issue on GitHub if there is any confusion.

First-principles phase diagram

In single-phase fittings, parameters are selected using the Akaike information criterion (AIC) to choose an optimal
set of parameters from canditate models (here, parameters in Redlich-Kister polynomials) that balance the number of
parameters with the goodness of fit. The AIC prevents overfitting or underfitting Gibbs free energy functions with
parameterizations with data. The key aspect of this is that ESPEI will avoid overfitting your data and will not add
parameters you do not have data for. This is important in the case of structures that should have some temperature
dependent contribution to the Gibbs energy parameterization, but the input data only gives 0K formation energies. In
this case, temperature dependence cannot be added and calculated to the thermodynamic model. Thus, an abundance
of single-phase data is critical to provide enough degrees of freedom in later optimization.

By using the Cu-Mg-input.json phase description for the fit settings and passing all of the input data in the
input-data folder, we can first use ESPEI to generate a phase diagram based on single-phase experimental and
DFT data. Currently all of the input datasets must be formation properties, and it can be seen that the formation
enthalpies are defined from DFT and experiments for the Laves and CuMg2 phases. Mixing enthalpies are defined for
the for the fcc, hcp, and Laves phases from DFT and for liquid from experimental measurements.

The following command will generate a database named cu-mg_dft.tdb with parameters selected and fit by ES-
PEI:

espei --input espei-in.yaml

where espei-in.yaml is a ESPEI input file with the following contents

system:
phase_models: Cu-Mg-input.json
datasets: input-data

generate_parameters:
excess_model: linear
ref_state: SGTE91

output:
output_db: cu-mg_dft.tdb

The calculation should be relatively quick, on the order of a minute of runtime. With the above command, only
mininmal output (warnings) will be reported. You can increase the verbosity to report info messages by setting the
output.verbosity key to 1 or debug messages with 2.

With the following code, we can look at the generated phase diagram and compare it to our data.

# First-principles phase diagram
from pycalphad import Database, variables as v
from espei.datasets import load_datasets, recursive_glob
from espei.plot import multiplot

# load the experimental and DFT datasets
datasets = load_datasets(recursive_glob('input-data', '*.json'))

# set up the pycalphad phase diagram calculation
dbf = Database('cu-mg_dft.tdb')
comps = ['CU', 'MG', 'VA']
phases = ['LIQUID', 'FCC_A1', 'HCP_A3', 'CUMG2', 'LAVES_C15']
conds = {v.P: 101325, v.T: (300, 1500, 10), v.X('MG'): (0, 1, 0.01)}

4.2. Cu-Mg Example 15
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# plot the phase diagram and data
multiplot(dbf, comps, phases, conds, datasets)

Which should result in the following figure

Fig. 4.1: First-principles Cu-Mg phase diagram from the single-phase fitting in ESPEI

We can see that the phase diagram is already very reasonable compared to the experimental points. The liquidus
temperatures and the solubilities of the fcc and Laves phases are the key differences between the equilibrium data and
our first-principles phase diagram. The next section will discuss using ESPEI to optimize the parameters selected and
calculated based on the single-phase data to these multi-phase equilibria.

MCMC-based Bayesian optimization

With the data in the CU-MG input data, ESPEI generated 11 parameters to fit. For systems with more components,
solution phases, and input data, may more parameters could be required to describe the thermodynamics of the specific
system well. Because they describe Gibbs free energies, parameters in CALPHAD models are highly correlated in
both single-phase descriptions and for describing equilibria between phases. For large systems, global numerical
optimization of many parameters simultaneously is computationally intractable.

To combat the problem of optimizing many paramters, ESPEI uses MCMC, a stochastic optimzation method. Details
of MCMC are better covered elsewhere, such as MacKay’s (free) book: Information Theory, Inference, and Learning
Algorithms.

Using MCMC for optimizing CALPHAD models might appear to have several drawbacks. As previously mentioned,
the parameters in the models are correlated, but we are also unsure about the shape and size of the posterior distribution

16 Chapter 4. License
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for each parameter before fitting. Particularly, traditional Metropolis-Hastings MCMC algorithms require the a prior
to be defined for each parameter, which is a problem for parameters in CALPHAD models which vary over more than
6 orders of magnitude.

ESPEI solves these potential problems by using an Ensemble sampler, as introduced by Goodman and Weare5, rather
than the Metropolis-Hastings algorithm. Ensemble samplers have the property of affine invariance, which uses multiple
(≥ 2𝑁 for 𝑁 parameters) parallel chains to scale new proposal parameters by linear transforms. These chains, together
an ensemble, define a proposal distribution to sample parameters from that is scaled to the magnitude and sensitivity
of each parameter. Thus, Ensemble samplers directly address the challenges we expect to encounter with traditional
MCMC.

ESPEI uses an Ensemble sampler algorithm by using the emcee package that implements parallelizable ensemble
samplers. To use emcee, ESPEI defines the initial ensemble of chains and a function that returns the error as a log-
probability. ESPEI defines the error as the mean square error between experimental phase equilibria and the equilibria
calculated by the CALPHAD database.

Here, again, it is critical to point out the importance of abundant phase equilibria data. Traditional CALPHAD mod-
eling has involved the modeler participating in tight feedback loops between updates to parameters and the resulting
phase diagram. ESPEI departs from this by optimizing just a single scalar error function based on phase equilibria.
The implication of this is that if there are phase equilibria that are observed to exist, but they are not in the datasets
that are considered by ESPEI, those equilibria cannot be optimized against and may deviate from ‘known’ equilibria.

We address this in ESPEI by estimating points for the equilibria. For the Cu-Mg system, it has been experimentally
reported that Cu has no solubility in Mg, so there are few measurements of solubility reported in the literature. In order
to properly reproduce this and prevent other parameters to be optimized in a way that introduces solubility in the hcp
phase, we have added the phase equilibria for the hcp phase (pink squares) to have 100% Mg (0% Cu). These points
effectively anchor the hcp phase to have no solubility. Because thermodynamic databases are typically developed
for pragmatic reasons, it is sensible to use these estimates, even for more complicated equilibria that there is no data
available for. ESPEI allows thermodynamic database to be easily reoptimized with little user interaction, so more data
can be added later and the database reoptimized at the cost of only computer time. In fact, the existing database from
estimates can be used as a starting point, rather than one directly from first-principles, and the database can simply be
modified to match any new data.

Now we will use our zero phase fraction equilibria data to optimize our first-principles database with MCMC. The
following command will take the database we created in the single-phase parameter selection and perform a MCMC
optimization, creating a cu-mg_mcmc.tdb:

espei --input espei-in.yaml

where espei-in.yaml is an ESPEI input file with the following structure

system:
phase_models: Cu-Mg-input.json
datasets: input-data

mcmc:
mcmc_steps: 1000
input_db: cu-mg_dft.tdb

output:
output_db: cu-mg_mcmc.tdb

ESPEI defaults to run 1000 iterations and depends on calculating equilibrium in pycalphad several times for each
iteration and the optimization is compute-bound. Fortunately, MCMC optimzations are embarrasingly parallel and
ESPEI allows for parallelization using dask or with MPI using mpi4py (single-node only at the time of writing - we
are working on it).

5 Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
doi:10.2140/camcos.2010.5.65.
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Note that you may also see messages about convergence failures or about droppping conditions. These refer to failures
to calculate the log-probability or in the pycalphad solver’s equilibrium calculation. They are not detrimental to the
optimization accuracy, but overall optimization may be slower because those parameter steps will never be accepted
(they return a log-probability of −∞).

Finally, we can use the newly optimized database to plot the phase diagram

# Optimized phase diagram from ESPEI's multi-phase fitting
from pycalphad import Database, variables as v
from espei.datasets import load_datasets, recursive_glob
from espei.plot import multiplot

# load the experimental and DFT datasets
datasets = load_datasets(recursive_glob('input-data', '*.json'))

# set up the pycalphad phase diagram calculation
dbf = Database('cu-mg_mcmc.tdb')
comps = ['CU', 'MG', 'VA']
phases = ['LIQUID', 'FCC_A1', 'HCP_A3', 'CUMG2', 'LAVES_C15']
conds = {v.P: 101325, v.T: (300, 1500, 10), v.X('MG'): (0, 1, 0.01)}

# plot the phase diagram and data
multiplot(dbf, comps, phases, conds, datasets)

Fig. 4.2: Optimized Cu-Mg phase diagram from the multi-phase fitting in ESPEI
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Gathering input data

JSON Format

ESPEI has a single input style in JSON format that is used for all data entry. Single-phase and multi-phase input files
are almost identical, but detailed descriptions and key differences can be found in the following sections. For those
unfamiliar with JSON, it is fairly similar to Python dictionaries with some rigid requirements

• All string quotes must be double quotes. Use "key" instead of 'key'.

• Numbers should not have leading zeros. 00.123 should be 0.123 and 012.34 must be 12.34.

• Lists and nested key-value pairs cannot have trailing commas. {"nums": [1,2,3,],} is invalid and
should be {"nums": [1,2,3]}.

These errors can be challenging to track down, particularly if you are only reading the JSON error messages in Python.
A visual editor is encouraged for debugging JSON files such as JSONLint. A quick reference to the format can be
found at Learn JSON in Y minutes.

ESPEI has support for checking all of your input datasets for errors, which you should always use before you attempt to
run ESPEI. This error checking will report all of the errors at once and all errors should be fixed. Errors in the datasets
will prevent fitting. To check the datasets at path my-input-data/ you can run espei --check-datasets
my-input-data.

Phase Descriptions

The JSON file for describing CALPHAD phases is conceptually similar to a setup file in Thermo-Calc’s PARROT
module. At the top of the file there is the refdata key that describes which reference state you would like to choose.
Currently the reference states are strings referring to dictionaries in pycalphad.refdata only "SGTE91" is
implemented.

Each phase is described with the phase name as they key in the dictionary of phases. The details of that phase
is a dictionary of values for that key. There are 4 possible entries to describe a phase: sublattice_model,
sublattice_site_ratios, equivalent_sublattices, and aliases. sublattice_model is a list
of lists, where each internal list contains all of the components in that sublattice. The BCC_B2 sublattice model
is [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]], thus there are three sublattices where the
first two have Al, Ni, and vacancies. sublattice_site_ratios should be of the same length as the sublattice
model (e.g. 3 for BCC_B2). The sublattice site ratios can be fractional or integers and do not have to sum to unity.

The optional equivalent_sublattices key is a list of lists that describe which sublattices are symmetrically
equivalent. Each sub-list in equivalent_sublattices describes the indices (zero-indexed) of sublattices that
are equivalent. For BCC_B2 the equivalent sublattices are [[0, 1]], meaning that the sublattice at index 0 and
index 1 are equivalent. There can be multiple different sets (multiple sub-lists) of equivalent sublattices and there can
be many equivalent sublattices within a sublattice (see FCC_L12). If no equivalent_sublattice key exists, it
is assumed that there are none.a

Finally, the aliases key is used to refer to other phases that this sublattice model can describe when symmetry
is accounted for. Aliases are used here to describe the BCC_A2 and FCC_A1, which are the disordered phases of
BCC_B2 and FCC_L12, respectively. Notice that the aliased phases are not otherwise described in the input file.
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Multiple phases can exist with aliases to the same phase, e.g. FCC_L12 and FCC_L10 can both have FCC_A1 as an
alias.

{
"refdata": "SGTE91",
"components": ["AL", "NI", "VA"],
"phases": {

"LIQUID" : {
"sublattice_model": [["AL", "NI"]],
"sublattice_site_ratios": [1]
},
"BCC_B2": {
"aliases": ["BCC_A2"],
"sublattice_model": [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]],
"sublattice_site_ratios": [0.5, 0.5, 1],
"equivalent_sublattices": [[0, 1]]
},
"FCC_L12": {

"aliases": ["FCC_A1"],
"sublattice_model": [["AL", "NI"], ["AL", "NI"], ["AL", "NI"], ["AL", "NI"], [

→˓"VA"]],
"sublattice_site_ratios": [0.25, 0.25, 0.25, 0.25, 1],
"equivalent_sublattices": [[0, 1, 2, 3]]
},
"AL3NI1": {
"sublattice_site_ratios": [0.75, 0.25],
"sublattice_model": [["AL"], ["NI"]]
},
"AL3NI2": {
"sublattice_site_ratios": [3, 2, 1],
"sublattice_model": [["AL"], ["AL", "NI"], ["NI", "VA"]]
},
"AL3NI5": {
"sublattice_site_ratios": [0.375, 0.625],
"sublattice_model": [["AL"], ["NI"]]
}

}
}

Single-phase Data

Two example of ESPEI input file for single-phase data follow. The first dataset has some data for the formation heat
capacity for BCC_B2.

The components and phases keys simply describe those found in this entry. Use the reference key for book-
keeping the source of the data. In solver the sublattice configuration and site ratios are described for the phase.

sublattice_configurations is a list of different configurations, that should correspond to the sublattices
for the phase descriptions. Non-mixing sublattices are represented as a string, while mixing sublattices are repre-
sented as a lists. Thus an endmember for BCC_B2 (as in this example) is ["AL", "NI", VA"] and if there
were mixing (as in the next example) it might be ["AL", ["AL", "NI"], "VA"]. Mixing also means that
the sublattice_occupancies key must be specified, but that is not the case in this example. Regardless
of whether there is mixing or not, the length of this list should always equal the number of sublattices in the
phase, though the sub-lists can have mixing up to the number of components in that sublattice. Note that the
sublattice_configurations is a list of these lists. That is, there can be multiple sublattice configurations
in a single dataset. See the second example in this section for such an example.
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The conditions describe temperatures (T) and pressures (P) as either scalars or one-dimensional lists. Most im-
portant to describing data are the output and values keys. The type of quantity is expressed using the output
key. This can in principle be any thermodynamic quantity, but currently only CPM*, SM*, and HM* (where * is either
nothing, _MIX or _FORM) are supported. Support for changing reference states planned but not yet implemented, so
all thermodynamic quantities must be formation quantities (e.g. HM_FORM or HM_MIX, etc.).

The values key is the most complicated and care must be taken to avoid mistakes. values is a 3-dimensional
array where each value is the output for a specific condition of pressure, temperature, and sublattice configurations
from outside to inside. Alternatively, the size of the array must be (len(P), len(T), len(subl_config)).
In the example below, the shape of the values array is (1, 12, 1) as there is one pressure scalar, one sublattice
configuration, and 12 temperatures. The formatting of this can be tricky, and it is suggested to use a NumPy array and
reshape or add axes using np.newaxis indexing.

{
"reference": "Yi Wang et al 2009",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [["AL", "NI", "VA"]],
"comment": "NiAl sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": [ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

},
"output": "CPM_FORM",
"values": [[[ 0 ],

[-0.0173 ],
[-0.01205],
[ 0.12915],
[ 0.24355],
[ 0.13305],
[-0.1617 ],
[-0.51625],
[-0.841 ],
[-1.0975 ],
[-1.28045],
[-1.3997 ]]]

}

In the second example below, there is formation enthalpy data for multiple sublattice configurations. All of
the keys and values are conceptually similar. Here, instead of describing how the output quantity changes
with temperature or pressure, we are instead only comparing HM_FORM values for different sublattice con-
figurations. The key differences from the previous example are that there are 9 different sublattice config-
urations described by sublattice_configurations and sublattice_occupancies. Note that the
sublattice_configurations and sublattice_occupancies should have exactly the same shape. Sub-
lattices without mixing should have single strings and occupancies of one. Sublattices that do have mixing should
have a site ratio for each active component in that sublattice. If the sublattice of a phase is ["AL", "NI", "VA"],
it should only have two occupancies if only ["AL", "NI"] are active in the sublattice configuration.

The last difference to note is the shape of the values array. Here there is one pressure, one temperature, and 9
sublattice configurations to give a shape of (1, 1, 9).

{
"reference": "C. Jiang 2009 (constrained SQS)",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
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"solver": {
"sublattice_occupancies": [

[1, [0.5, 0.5], 1],
[1, [0.75, 0.25], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1],
[1, [0.25, 0.75], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1]

],
"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [

["AL", ["NI", "VA"], "VA"],
["AL", ["NI", "VA"], "VA"],
["NI", ["AL", "NI"], "VA"],
["NI", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["NI", ["AL", "VA"], "VA"],
["NI", ["AL", "VA"], "VA"],
["VA", ["AL", "NI"], "VA"]

],
"comment": "BCC_B2 sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": 300

},
"output": "HM_FORM",
"values": [[[-40316.61077, -56361.58554,

-49636.39281, -32471.25149, -10890.09929,
-35190.49282, -38147.99217, -2463.55684,
-15183.13371]]]

}

Multi-phase Data

The difference between single- and multi-phase is data is in the absence of the solver key, since we are no longer
concerned with individual site configurations, and the values key where we need to represent phase equilibria
rather than thermodynamic quantities. Notice that the type of data we are entering in the output key is ZPF
(zero-phase fraction) rather than CP_FORM or H_MIX. Each entry in the ZPF list is a list of all phases in equi-
librium, here [["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]] where each
phase entry has the name of the phase, the composition element, and the composition of the tie line point. If
there is no corresponding tie line point, such as on a liquidus line, then one of the compositions will be null:
[["LIQUID", ["NI"], [0.6992]], ["BCC_B2", ["NI"], [null]]]. Three- or n-phase equilib-
ria are described as expected: [["LIQUID", ["NI"], [0.752]], ["BCC_B2", ["NI"], [0.71]],
["FCC_L12", ["NI"], [0.76]]].

Note that for higher-order systems the component names and compositions are lists and should be of length c-1,
where c is the number of components.

{
"components": ["AL", "NI"],
"phases": ["AL3NI2", "BCC_B2"],
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"conditions": {
"P": 101325,
"T": [1348, 1176, 977]

},
"output": "ZPF",
"values": [

[["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4456]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4532]]]

],
"reference": "37ALE"

}

Writing ESPEI input

This page aims to completely describe the ESPEI input file in the YAML format. Possibly useful links are the YAML
refcard and the (possibly less useful) Full YAML specification. These are all key value pairs in the format

key: value

They are nested for purely organizational purposes.

top_level_key:
key: value

As long as keys are nested under the correct heading, they have no required order. All of the possible keys are

system:
phase_models
datasets

output:
verbosity
output_db
tracefile
probfile

generate_parameters:
excess_model
ref_state

mcmc:
mcmc_steps
mcmc_save_interval
scheduler
input_db
restart_chain
chains_per_parameter
chain_std_deviation

The next sections describe each of the keys individually. If a setting has a default of required it must be set
explicitly.
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system

The system key is intended to describe the specific system you are fitting, including the components, phases, and the
data to fit to.

phase_models

type string

default required

The JSON file describing the CALPHAD models for each phase. See Phase Descriptions for an example of how to
write this file.

datasets

type string

default required

The path to a directory containing JSON files of input datasets. The file extension to each of the datasets must be
named as .json, but they can otherwise be named freely.

For an examples of writing these input JSON files, see Gathering input data.

output

verbosity

type int

default 0

Controls the logging level.

Value Log Level
0 Warning
1 Info
2 Debug

output_db

type string

default out.tdb

The database to write out. Can be any file format that can be written by a pycalphad Database.

tracefile

type string

default chain.npy
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Name of the file that the MCMC trace is written to. The array has shape (number of chains, iterations,
number of parameters).

The array is preallocated and padded with zeros, so if you selected to take 2000 MCMC steps, but only got through
1500, the last 500 values would be all 0.

You must choose a unique file name. An error will be raised if file specified by tracefile already exists.

probfile

type string

default lnprob.npy

Name of the file that the MCMC ln probabilities are written to. The array has shape (number of chains,
iterations).

The array is preallocated and padded with zeros, so if you selected to take 2000 MCMC steps, but only got through
1500, the last 500 values would be all 0.

You must choose a unique file name. An error will be raised if file specified by probfile already exists.

generate_parameters

The options in generate_parameters are used to control parameter selection and fitting to single phase data.
This should be used if you have input thermochemical data, such as heat capacities and mixing energies.

Generate parameters will use the Akaike information criterion to select model parameters and fit them, creating a
database.

excess_model

type string

default required

options linear

Which type of model to use for excess mixing parameters. Currently only linear is supported.

The exponential model is planned, as well as support for custom models.

ref_state

type string

default required

options SGTE91

The reference state to use for the pure elements and lattice stabilities. Currently only SGTE91 is supported.

There are plans to extend to the SGTE Unary 5 and also support custom reference states.
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mcmc

The options in mcmc control how Markov Chain Monte Carlo is performed using the emcee package.

In order to run an MCMC fitting, you need to specify one and only one source of parameters somewhere in the
input file. The parameters can come from including a generate_parameters step, or by specifying the mcmc.
input_db key with a file to load as pycalphad Database.

If you choose to use the parameters from a database, you can then further control settings based on whether it is the
first MCMC run for a system (you are starting fresh) or whether you are continuing from a previous run (a ‘restart’).

mcmc_steps

type int

default required

Number of iterations to perform in emcee. Each iteration consists of accepting one step for each chain in the ensemble.

mcmc_save_interval

yype int

default 20

Controls the interval for saving the MCMC chain and probability files.

scheduler

type string

default dask

options dask | MPIPool

Which scheduler to use for parallelization. You can choose from either dask or MPIPool.

Choosing dask will result in allocating half of your hyperthreaded cores to running ESPEI. This cannot currently be
controlled from the input file, but is planned.

Choosing MPIPool will allow you to set the number of processors directly using MPI.

It is recommended to use MPIPool if you will be running jobs on supercomputing clusters.

input_db

type string

default null

A file path that can be read as a pycalphad Database. The parameters to fit will be taken from this database.

For a parameter to be fit, it must be a symbol where the name starts with VV, e.g. VV0001. For a TDB formatted
database, this means that the free parameters must be functions of a single value that are used in your parameters. For
example, the following is a valid symbol to fit:

FUNCTION VV0000 298.15 10000; 6000 N !
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restart_chain

type string

default null

If you have run a previous MCMC calculation, then you will have a trace file that describes the position and history of
all of the chains from the run. You can use these chains to start the emcee run and pick up from where you left off in
the MCMC run by passing the trace file (e.g. chain.npy) to this key.

If you are restarting from a previous calculation, you must also specify the same database file (with input_db) as
you used to run that calculation.

chains_per_parameter

type int

default 2

This controls the number of chains to run in the MCMC calculation as an integer multiple of the number of parameters.

This parameter can only be used when initializing the first MCMC run. If you are restarting a calculation, the number
of chains per parameter is fixed by the number you chose previously.

Ensemble samplers require at least 2*p chains for p fitting parameters to be able to make proposals. If
chains_per_parameter = 2, then the number of chains if there are 10 parameters to fit is 20.

The value of chains_per_parameter must be an EVEN integer.

chain_std_deviation

type float

default 0.1

The standard deviation to use when initializing chains in a Gaussian distribution from a set of parameters as a fraction
of the parameter.

A value of 0.1 means that for parameters with values (-1.5, 2000, 50000) the chains will be initialized using
those values as the mean and (0.15, 200, 5000) as standard deviations for each parameter, respectively.

This parameter can only be used when initializing the first MCMC run. If you are restarting a calculation, the standard
deviation for your chains are fixed by the value you chose previously.

You may technically set this to any positive value, you would like. Be warned that too small of a standard deviation
may cause convergence to a local minimum in parameter space and slow convergence, while a standard deviation that
is too large may cause convergence to meaningless thermodynamic descriptions.

API Documentation

espei package

Subpackages

espei.tests package
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Submodules

espei.tests.test_core_utils module

espei.tests.test_core_utils.test_get_data_for_a_minimal_example()
Given a dataset and the congfiguration pertaining to that dataset, we should find the values.

espei.tests.test_datasets module

espei.tests.test_datasets.test_check_datasets_raises_on_misaligned_data()
Passed datasets that have misaligned data and conditions should raise DatasetError.

espei.tests.test_datasets.test_check_datasets_raises_with_incorrect_components()
Passed datasets that have incorrect components entered vs. used should raise.

espei.tests.test_datasets.test_check_datasets_raises_with_incorrect_zpf_phases()
Passed datasets that have incorrect phases entered than used should raise.

espei.tests.test_datasets.test_check_datasets_raises_with_malformed_sublattice_configurations()
Passed datasets that have malformed ZPF values should raise.

espei.tests.test_datasets.test_check_datasets_raises_with_malformed_zpf()
Passed datasets that have malformed ZPF values should raise.

espei.tests.test_datasets.test_check_datasets_run_on_good_data()
Passed valid datasets that should raise DatasetError.

espei.tests.test_paramselect module

espei.tests.test_paramselect.test_lnprob_does_not_raise_on_LinAlgError()
lnprob() should catch LinAlgError raised by equilibrium and return -np.inf

espei.tests.test_paramselect.test_lnprob_does_not_raise_on_ValueError()
lnprob() should catch ValueError raised by equilibrium and return -np.inf

espei.tests.test_schema module

Tests for input file validation

espei.tests.test_schema.test_correct_defaults_are_applied_from_minimal_specification()
A minimal run should generate several default settings for i/o and optional settings.

espei.tests.test_schema.test_input_yaml_invalid_for_mcmc_when_input_is_overspecified()
An MCMC run must get input from only generate_parameters or an input tdb (w/ or w/o a restart).

espei.tests.test_schema.test_input_yaml_invalid_for_mcmc_when_input_not_defined()
An MCMC run must get input from generate_parameters, an input tdb, or a restart and input tdb.

espei.tests.test_schema.test_input_yaml_valid_for_full_run()
A minimal full run input file should validate

espei.tests.test_schema.test_input_yaml_valid_for_generate_parameters_only()
A minimal generate parameters only input file should validate

espei.tests.test_schema.test_input_yaml_valid_for_mcmc_from_restart()
A minimal mcmc run from a restart should validate
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espei.tests.test_schema.test_input_yaml_valid_for_mcmc_from_tdb()
A minimal mcmc run from tdb input file should validate

espei.tests.test_utils module

Test espei.utils classes and functions.

espei.tests.test_utils.test_immediate_client_returns_map_results_directly()
Calls ImmediateClient.map should return the results, instead of Futures.

espei.tests.test_utils.test_pickelable_tinydb_can_be_pickled_and_unpickled()

Module contents

Submodules

espei.core_utils module

Module for handling data

espei.core_utils.build_sitefractions(phase_name, sublattice_configurations, sublat-
tice_occupancies)

Convert nested lists of sublattice configurations and occupancies to a list of dictionaries. The dictionaries map
SiteFraction symbols to occupancy values. Note that zero occupancy site fractions will need to be added sepa-
rately since the total degrees of freedom aren’t known in this function.

Parameters

• phase_name (str) – Name of the phase

• sublattice_configurations ([[str]]) – sublattice configuration

• sublattice_occupancies ([[float]]) – occupancy of each sublattice

Returns a list of site fractions over sublattices

Return type [[float]]

espei.core_utils.canonical_sort_key(x)
Wrap strings in tuples so they’ll sort.

Parameters x ([str]) – list of strings

Returns tuple of strings that can be sorted

Return type (str)

espei.core_utils.canonicalize(configuration, equivalent_sublattices)
Sort a sequence with symmetry. This routine gives the sequence a deterministic ordering while respecting
symmetry.

Parameters

• configuration ([str]) – Sublattice configuration to sort.

• equivalent_sublattices ({{int}}) – Indices of ‘configuration’ which should be
equivalent by symmetry, i.e., [[0, 4], [1, 2, 3]] means permuting elements 0 and 4, or 1, 2
and 3, respectively, has no effect on the equivalence of the sequence.

Returns sorted tuple that has been canonicalized.

Return type str
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espei.core_utils.endmembers_from_interaction(configuration)

espei.core_utils.get_data(comps, phase_name, configuration, symmetry, datasets, prop)

espei.core_utils.get_samples(desired_data)

espei.core_utils.list_to_tuple(x)

espei.core_utils.symmetry_filter(x, config, symmetry)

espei.datasets module

exception espei.datasets.DatasetError
Bases: Exception

Exception raised when datasets are invalid.

espei.datasets.check_dataset(dataset)
Ensure that the dataset is valid and consistent.

Currently supports the following validation checks: * data shape is valid * phases and components used match
phases and components entered

Planned validation checks: * all required keys are present * individual shapes of keys, such as ZPF, sublattice
configs and site ratios

Note that this follows some of the implicit assumptions in ESPEI at the time of writing, such that conditions are
only P, T, configs for single phase and essentially only T for ZPF data.

Parameters dataset (dict) – Dictionary of the standard ESPEI dataset.

Returns

Return type None

Raises DatasetError – If an error is found in the dataset

espei.datasets.load_datasets(dataset_filenames)
Create a PickelableTinyDB with the data from a list of filenames.

Parameters

• dataset_filenames ([str]) – List of filenames to load as datasets

• Returns –

• -------- –

• PickleableTinyDB –

espei.datasets.recursive_glob(start, pattern)
Recursively glob for the given pattern from the start directory.

Parameters

• start (str) – Path of the directory to walk while for file globbing

• pattern (str) – Filename pattern to match in the glob

Returns List of matched filenames

Return type [str]

30 Chapter 4. License



ESPEI Documentation, Release 0.1.3

espei.paramselect module

The paramselect module handles automated parameter selection for linear models.

Automated Parameter Selection End-members

Note: All magnetic parameters from literature for now. Note: No fitting below 298 K (so neglect third law issues for
now).

For each step, add one parameter at a time and compute AIC with max likelihood.

Cp - TlnT, T**2, T**-1, T**3 - 4 candidate models (S and H only have one required parameter each. Will fit in full
MCMC procedure)

Choose parameter set with best AIC score.

4. G (full MCMC) - all parameters selected at least once by above procedure

MCMC uses an EnsembleSampler based on Goodman and Weare, Ensemble Samplers with Affine Invariance. Com-
mun. Appl. Math. Comput. Sci. 5, 65-80 (2010).

espei.paramselect.estimate_hyperplane(dbf, comps, phases, current_statevars, comp_dicts,
phase_models, parameters)

espei.paramselect.fit(input_fname, datasets, resume=None, scheduler=None, run_mcmc=True,
tracefile=None, probfile=None, restart_chain=None, mcmc_steps=1000,
save_interval=100, chains_per_parameter=2, chain_std_deviation=0.1)

Fit thermodynamic and phase equilibria data to a model.

Parameters

• input_fname (str) – name of the input file containing the sublattice models.

• datasets (PickleableTinyDB) – database of single- and multi-phase to fit.

• resume (Database) – pycalphad Database of a file to start from. Using this parameter
causes single phase fitting to be skipped (multi-phase only).

• scheduler (callable) – Scheduler to use with emcee. Must implement a map method.

• run_mcmc (bool) – Controls if MCMC should be run. Default is True. Useful for first-
principles (single-phase only) runs.

• tracefile (str) – filename to store the flattened chain with NumPy.save. Array has
shape (nwalkers, iterations, nparams)

• probfile (str) – filename to store the flattened ln probability with NumPy.save

• restart_chain (np.ndarray) – ndarray of the previous chain. Should have shape
(nwalkers, iterations, nparams)

• mcmc_steps (int) – number of chain steps to calculate in MCMC. Note the flattened
chain will have (mcmc_steps*DOF) values. int (Default value = 1000)

• save_interval (int) – interval of steps to save the chain to the tracefile.

• chains_per_parameter (int) – number of chains for each parameter. Must be an
even integer greater or equal to 2. Defaults to 2.

• chain_std_deviation (float) – standard deviation of normal for parameter initial-
ization as a fraction of each parameter. Must be greater than 0. Default is 0.1, which is
10%.

Returns

• dbf (Database) – Resulting pycalphad database of optimized parameters
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• sampler (EnsembleSampler, ndarray)) – emcee sampler for further data wrangling

• parameters_dict (dict) – Optimized parameters

espei.paramselect.fit_formation_energy(dbf, comps, phase_name, configuration, symmetry,
datasets, features=None)

Find suitable linear model parameters for the given phase. We do this by successively fitting heat capacities,
entropies and enthalpies of formation, and selecting against criteria to prevent overfitting. The “best” set of
parameters minimizes the error without overfitting.

Parameters

• dbf (Database) – pycalphad Database. Partially complete, so we know what degrees of
freedom to fix.

• comps ([str]) – Names of the relevant components.

• phase_name (str) – Name of the desired phase for which the parameters will be found.

• configuration (ndarray) – Configuration of the sublattices for the fitting procedure.

• symmetry ([[int]]) – Symmetry of the sublattice configuration.

• datasets (PickleableTinyDB) – All the datasets desired to fit to.

• features (dict) – Maps “property” to a list of features for the linear model. These
will be transformed from “GM” coefficients e.g., {“CPM_FORM”: (v.T*sympy.log(v.T),
v.T**2, v.T**-1, v.T**3)} (Default value = None)

Returns {feature: estimated_value}

Return type dict

espei.paramselect.lnprob(params, data=None, comps=None, dbf=None, phases=None,
datasets=None, symbols_to_fit=None, phase_models=None, sched-
uler=None)

Returns the error from multiphase fitting as a log probability.

espei.paramselect.multi_phase_fit(dbf, comps, phases, datasets, phase_models, parame-
ters=None, scheduler=None)

espei.paramselect.phase_fit(dbf, phase_name, symmetry, subl_model, site_ratios, datasets, ref-
data, aliases=None)

Generate an initial CALPHAD model for a given phase and sublattice model.

Parameters

• dbf (Database) – pycalphad Database to add parameters to.

• phase_name (str) – Name of the phase.

• symmetry ([[int]]) – Sublattice model symmetry.

• subl_model ([[str]]) – Sublattice model for the phase of interest.

• site_ratios ([float]) – Number of sites in each sublattice, normalized to one atom.

• datasets (PickleableTinyDB) – All datasets to consider for the calculation.

• refdata (dict) – Maps tuple(element, phase_name) -> SymPy object defining energy
relative to SER

• aliases ([str]) – Alternative phase names. Useful for matching against reference data
or other datasets. (Default value = None)

Returns Modifies the dbf.

Return type None
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espei.paramselect.tieline_error(dbf, comps, current_phase, cond_dict, re-
gion_chemical_potentials, phase_flag, phase_models, pa-
rameters, debug_mode=False)

espei.plot module

Plotting of input data and calculated database quantities

espei.plot.dataplot(eq, datasets, ax=None)
Plot datapoints corresponding to the components and phases in the eq Dataset

Parameters

• eq (xarray.Dataset) – Result of equilibrium calculation.

• datasets (TinyDB) – Database of phase equilibria datasets

• ax (matplotlib.Axes) – Default axes used if not specified.

Returns

Return type A plot of phase equilibria points as a figure

Examples

>>> from pycalphad import equilibrium, Database, variables as v
>>> from pycalphad.plot.eqplot import eqplot
>>> from espei.datasets import load_datasets, recursive_glob
>>> datasets = load_datasets(recursive_glob('.', '*.json'))
>>> dbf = Database('my_databases.tdb')
>>> my_phases = list(dbf.phases.keys())
>>> eq = equilibrium(dbf, ['CU', 'MG', 'VA'], my_phases, {v.P: 101325, v.T: 1000,
→˓v.X('MG'): (0, 1, 0.01)})
>>> ax = eqplot(eq)
>>> ax = dataplot(eq, datasets, ax=ax)

espei.plot.multiplot(dbf, comps, phases, conds, datasets, eq_kwargs=None, plot_kwargs=None,
data_kwargs=None)

Plot a phase diagram with datapoints described by datasets. This is a wrapper around pycalphad.equilibrium,
pycalphad’s eqplot, and dataplot.

Parameters

• dbf (Database) – pycalphad thermodynamic database containing the relevant parame-
ters.

• comps (list) – Names of components to consider in the calculation.

• phases (list) – Names of phases to consider in the calculation.

• conds (dict) – Maps StateVariables to values and/or iterables of values.

• datasets (TinyDB) – Database of phase equilibria datasets

• eq_kwargs (dict) – Keyword arguments passed to pycalphad equilibrium()

• plot_kwargs (dict) – Keyword arguments passed to pycalphad eqplot()

• data_kwargs (dict) – Keyword arguments passed to dataplot()

Returns
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Return type A phase diagram with phase equilibria data as a figure

Examples

>>> from pycalphad import Database, variables as v
>>> from pycalphad.plot.eqplot import eqplot
>>> from espei.datasets import load_datasets, recursive_glob
>>> datasets = load_datasets(recursive_glob('.', '*.json'))
>>> dbf = Database('my_databases.tdb')
>>> my_phases = list(dbf.phases.keys())
>>> multiplot(dbf, ['CU', 'MG', 'VA'], my_phases, {v.P: 101325, v.T: 1000, v.X('MG
→˓'): (0, 1, 0.01)}, datasets)

espei.plot.plot_parameters(dbf, comps, phase_name, configuration, symmetry, datasets=None)

espei.run_espei module

Automated fitting script.

A minimal run must specify an input.json and a datasets folder containing input files.

espei.run_espei.get_run_settings(input_dict)
Validate settings from a dict of possible input.

Performs the following actions: 1. Normalize (apply defaults) 2. Validate against the schema

Parameters input_dict (dict) – Dictionary of input settings

Returns Validated run settings

Return type dict

Raises ValueError

espei.run_espei.main()

espei.utils module

Utilities for ESPEI

Classes and functions defined here should have some reuse potential.

espei.utils.sigfigs(x, n)
Round x to n significant digits

Module contents
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