
ESPEI Documentation
Release 0.1.3

Brandon Bocklund

Jul 24, 2017

Contents

1 Installation 3

2 Usage 5
2.1 Full run . 5
2.2 Single-phase only . 5
2.3 Multi-phase only . 6
2.4 Customization . 6
2.5 FAQ . 6

2.5.1 Q: There is an error in my JSON files . 6

3 Module Hierarchy 7

4 License 9
4.1 Writing input files . 9

4.1.1 JSON Format . 9
4.1.2 Phase Descriptions . 9
4.1.3 Single-phase Data . 10
4.1.4 Multi-phase Data . 12

4.2 What’s New . 13
4.2.1 0.1.4 (2017-07-24) . 13
4.2.2 0.1.3 (2017-06-23) . 13
4.2.3 0.1.2 (2017-06-23) . 13
4.2.4 0.1.1 (2017-06-23) . 13
4.2.5 0.1 (2017-06-23) . 13

4.3 API Documentation . 14
4.3.1 espei package . 14

4.3.1.1 Subpackages . 14
4.3.1.2 Submodules . 14
4.3.1.3 espei.core_utils module . 14
4.3.1.4 espei.fit module . 14
4.3.1.5 espei.paramselect module . 14
4.3.1.6 espei.plot module . 14
4.3.1.7 espei.utils module . 14
4.3.1.8 Module contents . 14

5 Indices and tables 15

i

ii

ESPEI Documentation, Release 0.1.3

ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for automated thermodynamic database
development within the CALPHAD method.

The ESPEI package is based on a fork of pycalphad-fitting and uses pycalphad for calculating Gibbs free energies of
thermodynamic models. The implementation for ESPEI involves first fitting single-phase data by calculating parame-
ters in thermodynamic models that are linearly described by the single-phase input data. Then Markov Chain Monte
Carlo (MCMC) is used to optimize the candidate models from the single-phase fitting to multi-phase zero-phase frac-
tion data. Single-phase and multi-phase fitting methods are described in Chapter 3 of Richard Otis’s thesis.

The benefit of this approach is the automated, simultaneous fitting for many parameters that yields uncertainty quan-
tification, as shown in Otis and Liu High-Throughput Thermodynamic Modeling and Uncertainty Quantification for
ICME. Jom 69, (2017).

The name and idea of ESPEI are originally based off of Shang, Wang, and Liu, ESPEI: Extensible, Self-optimizing
Phase Equilibrium Infrastructure for Magnesium Alloys Magnes. Technol. 2010 617–622 (2010).

Contents 1

https://github.com/richardotis/pycalphad-fitting
http://pycalphad.org
https://etda.libraries.psu.edu/catalog/s1784k73d
http://dx.doi.org/10.1007/s11837-017-2318-6

ESPEI Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Installation

Creating a virual environment is highly recommended. You can install ESPEI from PyPI

pip install espei

or install in develop mode from source

git clone https://github.com/phasesresearchlab/espei.git
cd espei
pip install -e .

3

ESPEI Documentation, Release 0.1.3

4 Chapter 1. Installation

CHAPTER 2

Usage

Run espei -h to see the options in the command utility.

ESPEI has two different fitting modes: single-phase and multi-phase fitting. You can run either of these modes or both
of them sequentially.

To run either of the modes, you need to have a fit settings file that describes the phases in the system using the standard
CALPHAD approach within the compound energy formalism. You also need to describe the data to fit. You will need
single-phase and multi-phase data for a full run. Fit settings and all datasets are stored as JSON files and described in
detail at the Writing input files page.

The main output result is going to be a database (defaults to out.tdb) and an array of the steps in the MCMC chain
(defaults to chain.txt).

Full run

A minimal run of ESPEI with single phase fitting and MCMC fitting would involve setting these two files

espei --datasets=my-dataset-folder --fit-settings=my-input.json

Single-phase only

If you have only heat capacity, entropy and enthalpy data and mixing data (e.g. from first-principles), you may want
to see the starting point for your MCMC calculation. To do this, simply pass the --no-mcmc flag to ESPEI

espei --no-mcmc --datasets=my-dataset-folder --fit-settings=my-input.json

5

ESPEI Documentation, Release 0.1.3

Multi-phase only

If you have a database already and just want to do a multi-phase fitting, you can specify a starting TDB file with

espei --datasets=my-dataset-folder --fit-settings=my-input.json --input-tdb=my-
→˓starting-database.tdb

The TDB file you input must have all of the degrees of freedom you want as FUNCTIONs with names beginning with
VV.

Customization

In all cases, ESPEI lets you control certain aspects of your calculations from the command line. Some useful options
are

• verbose (or -v) controls the logging level. Default is Warning. Using verbose once gives more detail (Info)
and twice even more (Debug)

• tracefile lets you set the output trace of the chain to any name you want. The default is chain.txt.

• output-tdb sets the name of the TDB output at the end of the run. Default is out.tdb.

• input-tdb is for setting input TDBs. This will skip single phase fitting and fit all parameters defined as
FUNCTIONs with names starting with VV.

• no-mcmc will do single-phase fitting only. Default is to perform MCMC fitting.

• mcmc-steps sets the number of MCMC steps. The default is 1000.

• save-interval controls the interval for saving the MCMC chain. The default is 100 steps.

Run espei -h to see all of the configurable options.

FAQ

Q: There is an error in my JSON files

A: Common mistakes are using single quotes instead of the double quotes required by JSON files. Another common
source of errors is misaligned open/closing brackets.

To find the offending files, you can rename the datasets to anything not ending in .json, such as my_datasets.
json.disabled. The renamed files will be ignored and it allows you to track down any problematic files.

6 Chapter 2. Usage

CHAPTER 3

Module Hierarchy

• fit.py is the main entry point

• paramselect.py is where all of the fitting happens. This is the core.

• core_utils.py contains specialized utilities for ESPEI.

• utils.py are utilities with reuse potential outside of ESPEI.

• plot.py holds plotting functions

7

ESPEI Documentation, Release 0.1.3

8 Chapter 3. Module Hierarchy

CHAPTER 4

License

ESPEI is MIT licensed. See LICENSE.

Writing input files

JSON Format

ESPEI has a single input style in JSON format that is used for all data entry. Single-phase and multi-phase input files
are almost identical, but detailed descriptions and key differences can be found in the following sections. For those
unfamiliar with JSON, it is fairly similar to Python dictionaries with some rigid requirements

• All string quotes must be double quotes. Use "key" instead of 'key'.

• Numbers should not have leading zeros. 00.123 should be 0.123 and 012.34 must be 12.34.

• Lists and nested key-value pairs cannot have trailing commas. {"nums": [1,2,3,],} is invalid and
should be {"nums": [1,2,3]}.

These errors can be challenging to track down, particularly if you are only reading the JSON error messages in Python.
A visual editor is encouraged for debugging JSON files such as JSONLint.

Phase Descriptions

The JSON file for describing CALPHAD phases is conceptually similar to a setup file in Thermo-Calc’s PARROT
module. At the top of the file there is the refdata key that describes which reference state you would like to choose.
Currently the reference states are strings referring to dictionaries in pycalphad.refdata only "SGTE91" is
implemented.

Each phase is described with the phase name as they key in the dictionary of phases. The details of that phase
is a dictionary of values for that key. There are 4 possible entries to describe a phase: sublattice_model,
sublattice_site_ratios, equivalent_sublattices, and aliases. sublattice_model is a list
of lists, where each internal list contains all of the components in that sublattice. The BCC_B2 sublattice model
is [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]], thus there are three sublattices where the

9

https://jsonlint.com

ESPEI Documentation, Release 0.1.3

first two have Al, Ni, and vacancies. sublattice_site_ratios should be of the same length as the sublattice
model (e.g. 3 for BCC_B2). The sublattice site ratios can be fractional or integers and do not have to sum to unity.

The optional equivalent_sublattices key is a list of lists that describe which sublattices are symmetrically
equivalent. Each sub-list in equivalent_sublattices describes the indices (zero-indexed) of sublattices that
are equivalent. For BCC_B2 the equivalent sublattices are [[0, 1]], meaning that the sublattice at index 0 and
index 1 are equivalent. There can be multiple different sets (multiple sub-lists) of equivalent sublattices and there can
be many equivalent sublattices within a sublattice (see FCC_L12). If no equivalent_sublattice key exists, it
is assumed that there are none.a

Finally, the aliases key is used to refer to other phases that this sublattice model can describe when symmetry
is accounted for. Aliases are used here to describe the BCC_A2 and FCC_A1, which are the disordered phases of
BCC_B2 and FCC_L12, respectively. Notice that the aliased phases are not otherwise described in the input file.
Multiple phases can exist with aliases to the same phase, e.g. FCC_L12 and FCC_L10 can both have FCC_A1 as an
alias.

{
"refdata": "SGTE91",
"components": ["AL", "NI", "VA"],
"phases": {

"LIQUID" : {
"sublattice_model": [["AL", "NI"]],
"sublattice_site_ratios": [1]
},
"BCC_B2": {
"aliases": ["BCC_A2"],
"sublattice_model": [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]],
"sublattice_site_ratios": [0.5, 0.5, 1],
"equivalent_sublattices": [[0, 1]]
},
"FCC_L12": {

"aliases": ["FCC_A1"],
"sublattice_model": [["AL", "NI"], ["AL", "NI"], ["AL", "NI"], ["AL", "NI"], [

→˓"VA"]],
"sublattice_site_ratios": [0.25, 0.25, 0.25, 0.25, 1],
"equivalent_sublattices": [[0, 1, 2, 3]]
},
"AL3NI1": {
"sublattice_site_ratios": [0.75, 0.25],
"sublattice_model": [["AL"], ["NI"]]
},
"AL3NI2": {
"sublattice_site_ratios": [3, 2, 1],
"sublattice_model": [["AL"], ["AL", "NI"], ["NI", "VA"]]
},
"AL3NI5": {
"sublattice_site_ratios": [0.375, 0.625],
"sublattice_model": [["AL"], ["NI"]]
}

}
}

Single-phase Data

Two example of ESPEI input file for single-phase data follow. The first dataset has some data for the formation heat
capacity for BCC_B2.

10 Chapter 4. License

ESPEI Documentation, Release 0.1.3

The components and phases keys simply describe those found in this entry. Use the reference key for book-
keeping the source of the data. In solver the sublattice configuration and site ratios are described for the phase.

sublattice_configurations is a list of different configurations, that should correspond to the sublattices
for the phase descriptions. Non-mixing sublattices are represented as a string, while mixing sublattices are repre-
sented as a lists. Thus an endmember for BCC_B2 (as in this example) is ["AL", "NI", VA"] and if there
were mixing (as in the next example) it might be ["AL", ["AL", "NI"], "VA"]. Mixing also means that
the sublattice_occupancies key must be specified, but that is not the case in this example. Regardless
of whether there is mixing or not, the length of this list should always equal the number of sublattices in the
phase, though the sub-lists can have mixing up to the number of components in that sublattice. Note that the
sublattice_configurations is a list of these lists. That is, there can be multiple sublattice configurations
in a single dataset. See the second example in this section for such an example.

The conditions describe temperatures (T) and pressures (P) as either scalars or one-dimensional lists. Most im-
portant to describing data are the output and values keys. The type of quantity is expressed using the output
key. This can in principle be any thermodynamic quantity, but currently only CPM*, SM*, and HM* (where * is either
nothing, _MIX or _FORM) are supported. Support for changing reference states planned but not yet implemented, so
all thermodynamic quantities must be formation quantities (e.g. HM_FORM or HM_MIX, etc.).

The values key is the most complicated and care must be taken to avoid mistakes. values is a 3-dimensional
array where each value is the output for a specific condition of pressure, temperature, and sublattice configurations
from outside to inside. Alternatively, the size of the array must be (len(P), len(T), len(subl_config)).
In the example below, the shape of the values array is (1, 12, 1) as there is one pressure scalar, one sublattice
configuration, and 12 temperatures. The formatting of this can be tricky, and it is suggested to use a NumPy array and
reshape or add axes using np.newaxis indexing.

{
"reference": "Yi Wang et al 2009",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [["AL", "NI", "VA"]],
"comment": "NiAl sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

},
"output": "CPM_FORM",
"values": [[[0],

[-0.0173],
[-0.01205],
[0.12915],
[0.24355],
[0.13305],
[-0.1617],
[-0.51625],
[-0.841],
[-1.0975],
[-1.28045],
[-1.3997]]]

}

In the second example below, there is formation enthalpy data for multiple sublattice configurations. All of
the keys and values are conceptually similar. Here, instead of describing how the output quantity changes
with temperature or pressure, we are instead only comparing HM_FORM values for different sublattice con-
figurations. The key differences from the previous example are that there are 9 different sublattice config-

4.1. Writing input files 11

ESPEI Documentation, Release 0.1.3

urations described by sublattice_configurations and sublattice_occupancies. Note that the
sublattice_configurations and sublattice_occupancies should have exactly the same shape. Sub-
lattices without mixing should have single strings and occupancies of one. Sublattices that do have mixing should
have a site ratio for each active component in that sublattice. If the sublattice of a phase is ["AL", "NI", "VA"],
it should only have two occupancies if only ["AL", "NI"] are active in the sublattice configuration.

The last difference to note is the shape of the values array. Here there is one pressure, one temperature, and 9
sublattice configurations to give a shape of (1, 1, 9).

{
"reference": "C. Jiang 2009 (constrained SQS)",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

"sublattice_occupancies": [
[1, [0.5, 0.5], 1],
[1, [0.75, 0.25], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1],
[1, [0.25, 0.75], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1]
],

"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [

["AL", ["NI", "VA"], "VA"],
["AL", ["NI", "VA"], "VA"],
["NI", ["AL", "NI"], "VA"],
["NI", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["NI", ["AL", "VA"], "VA"],
["NI", ["AL", "VA"], "VA"],
["VA", ["AL", "NI"], "VA"]

],
"comment": "BCC_B2 sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": 300

},
"output": "HM_FORM",
"values": [[[-40316.61077, -56361.58554,

-49636.39281, -32471.25149, -10890.09929,
-35190.49282, -38147.99217, -2463.55684,
-15183.13371]]]

}

Multi-phase Data

The difference between single- and multi-phase is data is in the absence of the solver key, since we are no longer
concerned with individual site configurations, and the values key where we need to represent phase equilibria
rather than thermodynamic quantities. Notice that the type of data we are entering in the output key is ZPF
(zero-phase fraction) rather than CP_FORM or H_MIX. Each entry in the ZPF list is a list of all phases in equi-
librium, here [["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]] where each

12 Chapter 4. License

ESPEI Documentation, Release 0.1.3

phase entry has the name of the phase, the composition element, and the composition of the tie line point. If
there is no corresponding tie line point, such as on a liquidus line, then one of the compositions will be null:
[["LIQUID", ["NI"], [0.6992]], ["BCC_B2", ["NI"], [null]]]. Three- or n-phase equilib-
ria are described as expected: [["LIQUID", ["NI"], [0.752]], ["BCC_B2", ["NI"], [0.71]],
["FCC_L12", ["NI"], [0.76]]].

Note that for higher-order systems the component names and compositions are lists and should be of length c-1,
where c is the number of components.

{
"components": ["AL", "NI"],
"phases": ["AL3NI2", "BCC_B2"],
"conditions": {

"P": 101325,
"T": [1348, 1176, 977]

},
"output": "ZPF",
"values": [

[["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4456]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4532]]]

],
"reference": "37ALE"

}

What’s New

0.1.4 (2017-07-24)

• Documentation improvements for usage and API docs

• Fail fast on JSON errors

0.1.3 (2017-06-23)

• Fix bad version pinning in setup.py

• Explicitly support Python 2.7

0.1.2 (2017-06-23)

• Fix dask incompatibilty due to new API usage

0.1.1 (2017-06-23)

• Fix a bug that caused logging to raise if bokeh isn’t installed

0.1 (2017-06-23)

ESPEI is now a package! New features include

4.2. What’s New 13

ESPEI Documentation, Release 0.1.3

• Fork https://github.com/richardotis/pycalphad-fitting

• Use emcee for MCMC fitting rather than pymc

• Support single-phase only fitting

• More control options for running ESPEI from the command line

• Better support for incremental saving of the chain

• Control over output with logging over printing

• Significant code cleanup

• Better usage documentation

API Documentation

espei package

Subpackages

espei.tests package

Submodules

espei.tests.test_utils module

Module contents

Submodules

espei.core_utils module

espei.fit module

espei.paramselect module

espei.plot module

espei.utils module

Module contents

14 Chapter 4. License

https://github.com/richardotis/pycalphad-fitting

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

	Installation
	Usage
	Full run
	Single-phase only
	Multi-phase only
	Customization
	FAQ
	Q: There is an error in my JSON files

	Module Hierarchy
	License
	Writing input files
	JSON Format
	Phase Descriptions
	Single-phase Data
	Multi-phase Data

	What's New
	0.1.4 (2017-07-24)
	0.1.3 (2017-06-23)
	0.1.2 (2017-06-23)
	0.1.1 (2017-06-23)
	0.1 (2017-06-23)

	API Documentation
	espei package
	Subpackages
	Submodules
	espei.core_utils module
	espei.fit module
	espei.paramselect module
	espei.plot module
	espei.utils module
	Module contents

	Indices and tables

