
ESPEI Documentation
Release 0.1.3

Brandon Bocklund

Apr 04, 2018

Contents

1 Installation 3
1.1 Anaconda (recommended) . 3
1.2 PyPI . 3
1.3 Development versions . 3

2 Usage 5
2.1 Single-phase only . 5
2.2 Multi-phase only . 6
2.3 Restart from previous run-phase only . 6
2.4 Full run . 6
2.5 Input Customization . 6
2.6 FAQ . 7

3 Getting Help 9

4 Module Hierarchy 11

5 License 13
5.1 What’s New . 13
5.2 Cu-Mg Example . 17
5.3 Gathering input data . 23
5.4 Writing ESPEI input . 28
5.5 Theory . 33
5.6 MPI . 34
5.7 API Documentation . 37
5.8 Contributing to ESPEI . 37

6 Indices and tables 41

i

ii

ESPEI Documentation, Release 0.1.3

ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for automated thermodynamic database
development within the CALPHAD method.

The ESPEI package is based on a fork of pycalphad-fitting and uses pycalphad for calculating Gibbs free energies of
thermodynamic models. The implementation for ESPEI involves first fitting single-phase data by calculating parame-
ters in thermodynamic models that are linearly described by the single-phase input data. Then Markov Chain Monte
Carlo (MCMC) is used to optimize the candidate models from the single-phase fitting to multi-phase zero-phase frac-
tion data. Single-phase and multi-phase fitting methods are described in Chapter 3 of Richard Otis’s thesis.

The benefit of this approach is the automated, simultaneous fitting for many parameters that yields uncertainty quan-
tification, as shown in Otis and Liu High-Throughput Thermodynamic Modeling and Uncertainty Quantification for
ICME. Jom 69, (2017).

The name and idea of ESPEI are originally based off of Shang, Wang, and Liu, ESPEI: Extensible, Self-optimizing
Phase Equilibrium Infrastructure for Magnesium Alloys Magnes. Technol. 2010 617-622 (2010).

Fig. 1: Cu-Mg phase diagram from a database created with and optimized by ESPEI. See the Cu-Mg Example.

Contents 1

https://github.com/richardotis/pycalphad-fitting
http://pycalphad.org
https://etda.libraries.psu.edu/catalog/s1784k73d
http://dx.doi.org/10.1007/s11837-017-2318-6
http://www.phases.psu.edu/wp-content/uploads/2010-Shang-Shunli-MagTech-ESPEI-0617-1.pdf

ESPEI Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Installation

1.1 Anaconda (recommended)

ESPEI does not require any special compiler, but several dependencies do. Therefore it is suggested to install ESPEI
from conda-forge.

conda install -c pycalphad -c msys2 -c conda-forge --yes espei

After installation, you must turn off dask’s work stealing. Change the work stealing setting to work-stealing:
False in ~/.dask/config.yaml. See the dask-distributed documentation for more.

1.2 PyPI

Before you install ESPEI via PyPI, be aware that pycalphad and emcee must be compiled and pycalphad requires an
external dependency of Ipopt.

pip install espei

After installation, you must turn off dask’s work stealing. Change the work stealing setting to work-stealing:
False in ~/.dask/config.yaml. See the dask-distributed documentation for more.

1.3 Development versions

You may install ESPEI however you like, but here we suggest using Anaconda to download all of the required depen-
dencies. This method installs ESPEI with Anaconda, removes specifically the ESPEI package, and replaces it with the
package from GitHub.

3

https://distributed.readthedocs.io/en/latest/configuration.html
https://projects.coin-or.org/Ipopt
https://distributed.readthedocs.io/en/latest/configuration.html

ESPEI Documentation, Release 0.1.3

git clone https://github.com/phasesresearchlab/espei.git
cd espei
conda install espei
conda remove --force espei
pip install -e .

Upgrading ESPEI later requires you to run git pull in this directory.

After installation, you must turn off dask’s work stealing. Change the work stealing setting to work-stealing:
False in ~/.dask/config.yaml. See the dask-distributed documentation for more.

4 Chapter 1. Installation

https://distributed.readthedocs.io/en/latest/configuration.html

CHAPTER 2

Usage

ESPEI has two different fitting modes: single-phase and multi-phase fitting. You can run either of these modes or both
of them sequentially.

To run either of the modes, you need to have a phase models file that describes the phases in the system using the
standard CALPHAD approach within the compound energy formalism. You also need to describe the data that ESPEI
should fit to. You will need single-phase and multi-phase data for a full run. Fit settings and all datasets are stored
as JSON files and described in detail at the Gathering input data page. All of your input datasets should be validated
by running espei --check-datasets my-input-datasets, where my-input-datasets is a folder
of all your JSON files.

The main output result is going to be a database (defaults to out.tdb), an array of the steps in the MCMC chain
(defaults to chain.npy), and the an array of the log-probabilities for each iteration and chain (defaults to lnprob.
npy).

2.1 Single-phase only

If you have only heat capacity, entropy and enthalpy data and mixing data (e.g. from first-principles), you may want
to see the starting point for your MCMC calculation.

Create an input file called espei-in.yaml.

system:
phase_models: my-phases.json
datasets: my-input-datasets

generate_parameters:
excess_model: linear
ref_state: SGTE91

Then ESPEI can be run by running

espei --input espei-in.yaml

5

ESPEI Documentation, Release 0.1.3

2.2 Multi-phase only

If you have a database already and just want to do a multi-phase fitting, you can specify a starting TDB file (named
my-tdb.tdb) with

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
mcmc_steps: 1000
input_db: my-tdb.tdb

The TDB file you input must have all of the degrees of freedom you want as FUNCTIONs with names beginning with
VV.

2.3 Restart from previous run-phase only

If you’ve run an MCMC fitting already in ESPEI and have a chain file called my-previous-chain.npy , then
you can resume the calculation with the following input file

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
mcmc_steps: 1000
input_db: my-tdb.tdb
restart_chain: my-previous-chain.npy

2.4 Full run

A minimal full run of ESPEI with single phase fitting and MCMC fitting is done by the following

system:
phase_models: my-phases.json
datasets: my-input-data

generate_parameters:
excess_model: linear
ref_state: SGTE91

mcmc:
mcmc_steps: 1000

2.5 Input Customization

ESPEI lets you control many aspects of your calculations with the input files shown above. See Writing ESPEI input
for a full description of all possible inputs.

6 Chapter 2. Usage

ESPEI Documentation, Release 0.1.3

2.6 FAQ

2.6.1 Q: There is an error in my JSON files

A: Common mistakes are using single quotes instead of the double quotes required by JSON files. Another common
source of errors is misaligned open/closing brackets.

Many mistakes are found with ESPEI’s check-datasets utility. Run espei check-datasets
my-input-datasets on your directory my-input-datasets.

2.6.2 Q: How do I analyze my results?

A: By default, ESPEI will create chain.npy and lnprob.npy for the MCMC chain at the end of your run
and according to the save interval (defaults to every 20 iterations). These are created from arrays via numpy.
save() and can thus be loaded with numpy.load(). Note that the arrays are preallocated with zeros. These
filenames and settings can be changed using in the input file. You can then use these chains and corresponding log-
probabilities to make corner plots, calculate autocorrelations, find optimal parameters for databases, etc.. Finally, you
can use py:mod:espei.plot functions such as multiplot to plot phase diagrams with your input equilibria data and
plot_parameters to compare single-phase data (e.g. formation and mixing data) with the properties calculated
with your database.

2.6.3 Q: Can I run ESPEI on a supercomputer supporting MPI?

A: Yes! ESPEI has MPI support. See the MPI page for more details.

2.6. FAQ 7

ESPEI Documentation, Release 0.1.3

8 Chapter 2. Usage

CHAPTER 3

Getting Help

For help on installing and using ESPEI, please join the PhasesResearchLab/ESPEI Gitter room.

Bugs and software issues should be reported on GitHub.

9

https://gitter.im/PhasesResearchLab/ESPEI
https://github.com/PhasesResearchLab/ESPEI/issues

ESPEI Documentation, Release 0.1.3

10 Chapter 3. Getting Help

CHAPTER 4

Module Hierarchy

• fit.py is the main entry point

• paramselect.py is where all of the fitting happens. This is the core.

• core_utils.py contains specialized utilities for ESPEI.

• utils.py are utilities with reuse potential outside of ESPEI.

• plot.py holds plotting functions

11

ESPEI Documentation, Release 0.1.3

12 Chapter 4. Module Hierarchy

CHAPTER 5

License

ESPEI is MIT licensed. See LICENSE.

5.1 What’s New

5.1.1 0.5 (2018-04-02)

• Parameter selection now uses the corrected AIC, which further prevents overparameterization where there is
sparse training data.

• Activity and single phase thermochemical data can now be included in MCMC fitting runs. Including single
phase data can help anchor metastable phases to DFT data when they are not on the stable phase diagram. See
the Gathering input data documentation for information on how to input activity data.

• Dataset checking has been improved. Now there are checks to make sure sublattice interactions are properly
sorted and mole fractions sum to less than 1.0 in ZPF data.

• Support for fitting phases with arbitrary pycalphad Models in MCMC, including (charged and neutral) species
and ionic liquids. There are several consequences of this: - ESPEI requires support on pycalphad >=0.
7 - ESPEI now uses pycalphad Model objects directly. Using the JIT compiled Models has shown up to
a 50% performance improvement in MCMC runs. - Using JIT compiled Model objects required the use
of cloudpickle everywhere. Due to challenges in overriding pickle for upstream packages, we now
rely solely on dask for scheduler tasks, including mpi via dask-mpi. Note that users must turn off
work-stealing in their ~/.dask/config.yaml file.

• [Developers] Each method for calculating error in MCMC has been moved into a module for that method in
an error_functions subpackage. One top level function from each module should be imported into the
mcmc.py and used in lnprob. Developers should then just customize lnprob.

• [Developers] Significant internal docs improvements: all non-trival functions have complete docstrings.

13

http://espei.org/en/latest/input_data.html

ESPEI Documentation, Release 0.1.3

5.1.2 0.4.1 (2018-02-05)

• Enable plotting of isothermal sections with data using dataplot (and multiplot, etc.)

• Tielines are now plotted in dataplot for isothermal sections and T-x phase diagrams

• Add a useful ravel_conditions method to unpack conditions from datasets

5.1.3 0.4 (2017-12-29)

• MCMC is now deterministic by default (can be toggled off with the mcmc.deterministic setting).

• Added support for having no scheduler (running with no parallelism) with the mcmc.scheduler option set
to None. This may be useful for debugging.

• Logging improvements

– Extraneous warnings that may be confusing for users and dirty the log are silenced.

– A warning is added for when there are no datasets found.

– Fixed a bug where logging was silenced with the dask scheduler

• Add optimal_parameters utility function as a helper to get optimal parameter sets for analysis

• Several improvements to plotting

– Users can now plot phase diagram data alone with dataplot, useful for checking datasets visually. This
changes the API for dataplot to no longer infer the conditions from an equilibrium Dataset (from
pycalphad). That functionality is preserved in eqdataplot.

– Experimental data points are now plotted with unique symbols depending on the reference key in the
dataset. This is for both phase diagram and single phase parameter plots.

– Options to control plotting parameters (e.g. symbol size) and take user supplied Axes and Figures in the
plotting functions. The symbol size is now smaller by default.

• Documentation improvements for API and separation of theory from the Cu-Mg example

• Fixes a bug where elements with single character names would not find the correct reference state (which are
typically named GHSERCC for the example of C).

• [Developer] All MCMC code is moved from the paramselect module to the mcmc module to separate these
tasks

• [Developer] Support for arbitrary user reference states (so long as the reference state is in the refdata module
and follows the same format as SGTE91)

5.1.4 0.3.1.post2 (2017-10-31)

• Propogate the new entry point to setup.py

5.1.5 0.3.1.post1 (2017-10-31)

• Fix for module name/function conflict in entry point

14 Chapter 5. License

ESPEI Documentation, Release 0.1.3

5.1.6 0.3.1 (2017-10-31)

• ESPEI is much easier to run interactively in Python and in Jupyter Notebooks

• Reference data is now included in ESPEI instead of in pycalphad

• Several reference data fixes including support for single character elements (‘V’, ‘B’, ‘C’, . . .)

• Support for using multiprocessing to parallelize MCMC runs, used by default (@olivia-higgins)

• Improved documentation for installing and developing ESPEI

5.1.7 0.3.post2 (2017-09-20)

• Add input-schema.yaml file to installer

5.1.8 0.3.post1 (2017-09-20)

• Add LICENSE to manifest

5.1.9 0.3 (2017-09-20)

• ESPEI input is now described by a file. This change is breaking. Old command line arguments are not
supported. See Writing input files for a full description of all the inputs.

• New input options are supported, including modifying the number of chains and standard deviation from the
mean

• ESPEI is now available on conda-forge

• TinyDB 2 support is dropped in favor of TinyDB 3 for conda-forge deployment

• Allow for restarting previous mcmc calculations with a trace file

• Add Cu-Mg example to documentation

5.1.10 0.2.1 (2017-08-17)

Fixes to the 0.2 release plotting interface

• multiplot is renamed from multi_plot, as in docs.

• Fixed an issue where phases in datasets, but not in equilibrium were not plotted by dataplot and raised an error.

5.1.11 0.2 (2017-08-15)

• New multiplot interface for convienent plotting of phase diagrams + data. dataplot function underlies
key data plotting features and can be used with eqplot. See their API docs for examples. Will break existing
code using multiplot.

• MPI support for local/HPC runs. Only single node runs are explictly supported currently. Use
--scheduler='MPIPool' command line option. Requires mpi4py.

• Default debug reporting of acceptance ratios

• Option (and default) to output the log probability array matching the trace. Use --probfile option to control.

5.1. What’s New 15

http://espei.org/en/latest/writing_input.html

ESPEI Documentation, Release 0.1.3

• Optimal parameters are now chosen based on lowest error in chain.

• Bug fixes including

– py2/3 compatibiltiy

– unicode datasets

– handling of singular matrix errors from pycalphad’s equilibrium

– reporting of failed conditions

5.1.12 0.1.5 (2017-08-02)

• Significant error checking of JSON inputs.

• Add new --check-datasets option to check the datasets at path. It should be run before you run ESPEI
fittings. All errors must be resolved before you run.

• Move the espei script module from fit.py to run_espei.py.

• Better docs building with mocking

• Google docstrings are now NumPy docstrings

5.1.13 0.1.4 (2017-07-24)

• Documentation improvements for usage and API docs

• Fail fast on JSON errors

5.1.14 0.1.3 (2017-06-23)

• Fix bad version pinning in setup.py

• Explicitly support Python 2.7

5.1.15 0.1.2 (2017-06-23)

• Fix dask incompatibilty due to new API usage

5.1.16 0.1.1 (2017-06-23)

• Fix a bug that caused logging to raise if bokeh isn’t installed

5.1.17 0.1 (2017-06-23)

ESPEI is now a package! New features include

• Fork https://github.com/richardotis/pycalphad-fitting

• Use emcee for MCMC fitting rather than pymc

• Support single-phase only fitting

• More control options for running ESPEI from the command line

16 Chapter 5. License

https://github.com/richardotis/pycalphad-fitting

ESPEI Documentation, Release 0.1.3

• Better support for incremental saving of the chain

• Control over output with logging over printing

• Significant code cleanup

• Better usage documentation

5.2 Cu-Mg Example

The Cu-Mg binary system is an interesting and simple binary subsystem for light metal alloys. It has been mod-
eled in the literature by Coughanowr et al.1, Zuo and Chang2 and Zhou et al.3 and was featured as a case study in
Computational Thermodynamics The Calphad Method by Lukas, Fries, & Sundman4.

Here we will combine density functional theory and experimental calculations of single-phase data to generate a
first-principles phase diagram. Then that database will be used as a starting point for a Markov Chain Monte Carlo
(MCMC) Bayesian optimization of the parameters to fit zero-phase fraction data.

5.2.1 Input data

All of the input data for ESPEI is stored in a public ESPEI-datasets repository on GitHub. The data in this repository
is Creative Commons Attribution 4.0 (CC-BY-4.0) licensed and may be used, commercialized or reused freely.

In order to run ESPEI with the data in ESPEI-datasets, you should clone this repository to your computer. Files
referred to throughout this tutorial are found in the CU-MG folder. The input files will be very breifly explained in this
tutorial so that you are able to know their use. A more detailed description of the files is found on the Gathering input
data page.

If you make changes or additions, you are encouraged to share these back to the ESPEI-datasets repository so that
others may benefit from this data as you have. You may then add your name to the CONTRIBUTORS file as described
in the README.

5.2.2 Phases and CALPHAD models

The Cu-Mg system contains five stable phases: Liquid, disordered fcc and hcp, the C15 Laves phase and the CuMg2
phase. All of these phases will be modeled as solution phases, except for CuMg2, which will be represented as a
stoichiometric compound. The phase names and corresponding sublattice models are as follows:

LIQUID: (CU, MG)1
FCC_A1: (CU, MG)1 (VA)1
HCP_A3: (CU, MG)1 (VA)1
LAVES_C15: (CU, MG)2 (CU, MG)1
CUMG2: (CU)1 (MG)2

These phase names and sublattice models are described in the JSON file Cu-Mg-input.json file as seen below

1 Coughanowr, C. A., Ansara, I., Luoma, R., Hamalainen, M. & Lukas, H. L. Assessment of the Cu-Mg system. Zeitschrift f{ü}r Met. 82,
574–581 (1991).

2 Zuo, Y. U. E. & Chang, Y. A. Thermodynamic calculation of the Mg-Cu phase diagram. Zeitschrift f{ü}r Met. 84, 662–667 (1993).
3 Zhou, S. et al. Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System. J. Phase Equilibria Diffus. 28,

158–166 (2007). doi:10.1007/s11669-007-9022-0
4 Lukas, H., Fries, S. G. & Sundman, B. Computational Thermodynamics The Calphad Method. (Cambridge University Press, 2007).

doi:10.1017/CBO9780511804137

5.2. Cu-Mg Example 17

https://github.com/phasesresearchlab/espei-datasets
https://doi.org/10.1007/s11669-007-9022-0
https://doi.org/10.1017/CBO9780511804137

ESPEI Documentation, Release 0.1.3

{
"components": ["CU", "MG", "VA"],
"phases": {

"LIQUID" : {
"sublattice_model": [["CU", "MG"]],
"sublattice_site_ratios": [1]

},
"CUMG2": {

"sublattice_model": [["CU"], ["MG"]],
"sublattice_site_ratios": [1, 2]

},
"FCC_A1": {

"sublattice_model": [["CU", "MG"], ["VA"]],
"sublattice_site_ratios": [1, 1]

},
"HCP_A3": {

"sublattice_site_ratios": [1, 0.5],
"sublattice_model": [["CU", "MG"], ["VA"]]

},
"LAVES_C15": {

"sublattice_site_ratios": [2, 1],
"sublattice_model": [["CU", "MG"], ["CU", "MG"]]

}
}

}

5.2.3 ESPEI

ESPEI has two types of fitting – parameter generation and MCMC optimization. The parameter generation step uses
experimental and first-principles data of the derivatives of the Gibbs free energy to parameterize the Gibbs energies of
each individual phase. The MCMC optimization step fits the generated parameters to experimental phase equilibria
data. These two fitting procedures can be used together to fully assess a given system. For clarity, we will preform
these steps separately to fit Cu-Mg. The next two sections are devoted to describing ESPEI’s parameter generation and
optimization.

Though it should be no problem for this case, since the data has already been used, you should get in the habit of
checking datasets before running ESPEI. ESPEI has a tool to help find and report problems in your datasets. This
is automatically run when you load the datasets, but will fail on the first error. Running the following commmand
(assuming from here on that you are in the CU-MG folder from ESPEI-datasets):

espei --check-datasets input-data

The benefit of the this approach is that all of the datasets will be checked and reported at once. If there are any
failures, a list of them will be reported with the two main types of errors being JSONError, for which you should
read the JSON section of Gathering input data, or DatasetError, which are related to the validity of your datasets
scientifically (maching conditions and values shape, etc.). The DatasetError messages are designed to be clear,
so please open an issue on GitHub if there is any confusion.

5.2.4 First-principles phase diagram

By using the Cu-Mg-input.json phase description for the fit settings and passing all of the input data in the
input-data folder, we can first use ESPEI to generate a phase diagram based on single-phase experimental and
DFT data. Currently all of the input datasets must be formation properties, and it can be seen that the formation

18 Chapter 5. License

https://github.com/phasesresearchlab/espei-datasets
https://github.com/PhasesResearchLab/ESPEI/issues

ESPEI Documentation, Release 0.1.3

enthalpies are defined from DFT and experiments for the Laves and CuMg2 phases. Mixing enthalpies are defined for
the for the fcc, hcp, and Laves phases from DFT and for liquid from experimental measurements.

The following command will generate a database named cu-mg_dft.tdb with parameters selected and fit by ES-
PEI:

espei --input espei-in.yaml

where espei-in.yaml is a ESPEI input file with the following contents

system:
phase_models: Cu-Mg-input.json
datasets: input-data

generate_parameters:
excess_model: linear
ref_state: SGTE91

output:
output_db: cu-mg_dft.tdb

The calculation should be relatively quick, on the order of a minute of runtime. With the above command, only
mininmal output (warnings) will be reported. You can increase the verbosity to report info messages by setting the
output.verbosity key to 1 or debug messages with 2.

With the following code, we can look at the generated phase diagram and compare it to our data.

First-principles phase diagram
from pycalphad import Database, variables as v
from espei.datasets import load_datasets, recursive_glob
from espei.plot import multiplot
import matplotlib.pyplot as plt

load the experimental and DFT datasets
datasets = load_datasets(recursive_glob('input-data', '*.json'))

set up the pycalphad phase diagram calculation
dbf = Database('cu-mg_dft.tdb')
comps = ['CU', 'MG', 'VA']
phases = ['LIQUID', 'FCC_A1', 'HCP_A3', 'CUMG2', 'LAVES_C15']
conds = {v.P: 101325, v.T: (300, 1500, 10), v.X('MG'): (0, 1, 0.01)}

plot the phase diagram and data
multiplot(dbf, comps, phases, conds, datasets)
plt.savefig('cu-mg_dft_phase_diagram.png')

Which should result in the following figure

We can see that the phase diagram is already very reasonable compared to the experimental points. The liquidus
temperatures and the solubilities of the fcc and Laves phases are the key differences between the equilibrium data and
our first-principles phase diagram. The next section will discuss using ESPEI to optimize the parameters selected and
calculated based on the single-phase data to these multi-phase equilibria.

5.2.5 MCMC optimization

With the data in the CU-MG input data, ESPEI generated 18 parameters to fit. For systems with more components,
solution phases, and input data, may more parameters could be required to describe the thermodynamics of the specific
system well. Because they describe Gibbs free energies, parameters in CALPHAD models are highly correlated in
both single-phase descriptions and for describing equilibria between phases. For large systems, global numerical
optimization of many parameters simultaneously is computationally intractable.

5.2. Cu-Mg Example 19

ESPEI Documentation, Release 0.1.3

Fig. 1: First-principles Cu-Mg phase diagram from the single-phase fitting in ESPEI

20 Chapter 5. License

ESPEI Documentation, Release 0.1.3

To combat the problem of optimizing many paramters, ESPEI uses MCMC, a stochastic optimzation method. For
more details on how MCMC is used in ESPEI, see the Theory page.

Now we will use our zero phase fraction equilibria data to optimize our first-principles database with MCMC. The
following command will take the database we created in the single-phase parameter selection and perform a MCMC
optimization, creating a cu-mg_mcmc.tdb:

espei --input espei-in.yaml

where espei-in.yaml is an ESPEI input file with the following structure

system:
phase_models: Cu-Mg-input.json
datasets: input-data

mcmc:
mcmc_steps: 1000
input_db: cu-mg_dft.tdb

output:
output_db: cu-mg_mcmc.tdb

ESPEI defaults to run 1000 iterations and depends on calculating equilibrium in pycalphad several times for each
iteration and the optimization is compute-bound. Fortunately, MCMC optimzations are embarrasingly parallel and
ESPEI allows for parallelization using dask or with MPI using mpi4py (single-node only at the time of writing - we
are working on it).

Note that you may also see messages about convergence failures or about droppping conditions. These refer to failures
to calculate the log-probability or in the pycalphad solver’s equilibrium calculation. They are not detrimental to the
optimization accuracy, but overall optimization may be slower because those parameter steps will never be accepted
(they return a log-probability of −∞).

Finally, we can use the newly optimized database to plot the phase diagram

Optimized phase diagram from ESPEI's multi-phase fitting
from pycalphad import Database, variables as v
from espei.datasets import load_datasets, recursive_glob
from espei.plot import multiplot
import matplotlib.pyplot as plt

load the experimental and DFT datasets
datasets = load_datasets(recursive_glob('input-data', '*.json'))

set up the pycalphad phase diagram calculation
dbf = Database('cu-mg_mcmc.tdb')
comps = ['CU', 'MG', 'VA']
phases = ['LIQUID', 'FCC_A1', 'HCP_A3', 'CUMG2', 'LAVES_C15']
conds = {v.P: 101325, v.T: (300, 1500, 10), v.X('MG'): (0, 1, 0.01)}

plot the phase diagram and data
multiplot(dbf, comps, phases, conds, datasets)
plt.savefig('cu-mg_mcmc_phase_diagram.png')

ESPEI allows thermodynamic database to be easily reoptimized with little user interaction, so more data can be added
later and the database reoptimized at the cost of only computer time. In fact, the existing database from estimates can
be used as a starting point, rather than one directly from first-principles, and the database can simply be modified to
match any new data.

5.2. Cu-Mg Example 21

http://dask.pydata.org/
http://mpi4py.scipy.org/

ESPEI Documentation, Release 0.1.3

Fig. 2: Optimized Cu-Mg phase diagram from the multi-phase fitting in ESPEI

22 Chapter 5. License

ESPEI Documentation, Release 0.1.3

5.2.6 References

5.2.7 Acknowledgements

Credit for initially preparing the datasets goes to Aleksei Egorov.

5.3 Gathering input data

5.3.1 JSON Format

ESPEI has a single input style in JSON format that is used for all data entry. Single-phase and multi-phase input files
are almost identical, but detailed descriptions and key differences can be found in the following sections. For those
unfamiliar with JSON, it is fairly similar to Python dictionaries with some rigid requirements

• All string quotes must be double quotes. Use "key" instead of 'key'.

• Numbers should not have leading zeros. 00.123 should be 0.123 and 012.34 must be 12.34.

• Lists and nested key-value pairs cannot have trailing commas. {"nums": [1,2,3,],} is invalid and
should be {"nums": [1,2,3]}.

These errors can be challenging to track down, particularly if you are only reading the JSON error messages in Python.
A visual editor is encouraged for debugging JSON files such as JSONLint. A quick reference to the format can be
found at Learn JSON in Y minutes.

ESPEI has support for checking all of your input datasets for errors, which you should always use before you attempt to
run ESPEI. This error checking will report all of the errors at once and all errors should be fixed. Errors in the datasets
will prevent fitting. To check the datasets at path my-input-data/ you can run espei --check-datasets
my-input-data.

5.3.2 Phase Descriptions

The JSON file for describing CALPHAD phases is conceptually similar to a setup file in Thermo-Calc’s PARROT
module. At the top of the file there is the refdata key that describes which reference state you would like to choose.
Currently the reference states are strings referring to dictionaries in pycalphad.refdata only "SGTE91" is
implemented.

Each phase is described with the phase name as they key in the dictionary of phases. The details of that phase
is a dictionary of values for that key. There are 4 possible entries to describe a phase: sublattice_model,
sublattice_site_ratios, equivalent_sublattices, and aliases. sublattice_model is a list
of lists, where each internal list contains all of the components in that sublattice. The BCC_B2 sublattice model
is [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]], thus there are three sublattices where the
first two have Al, Ni, and vacancies. sublattice_site_ratios should be of the same length as the sublattice
model (e.g. 3 for BCC_B2). The sublattice site ratios can be fractional or integers and do not have to sum to unity.

The optional equivalent_sublattices key is a list of lists that describe which sublattices are symmetrically
equivalent. Each sub-list in equivalent_sublattices describes the indices (zero-indexed) of sublattices that
are equivalent. For BCC_B2 the equivalent sublattices are [[0, 1]], meaning that the sublattice at index 0 and
index 1 are equivalent. There can be multiple different sets (multiple sub-lists) of equivalent sublattices and there can
be many equivalent sublattices within a sublattice (see FCC_L12). If no equivalent_sublattice key exists, it
is assumed that there are none.a

Finally, the aliases key is used to refer to other phases that this sublattice model can describe when symmetry
is accounted for. Aliases are used here to describe the BCC_A2 and FCC_A1, which are the disordered phases of
BCC_B2 and FCC_L12, respectively. Notice that the aliased phases are not otherwise described in the input file.

5.3. Gathering input data 23

https://jsonlint.com
https://learnxinyminutes.com/docs/json/

ESPEI Documentation, Release 0.1.3

Multiple phases can exist with aliases to the same phase, e.g. FCC_L12 and FCC_L10 can both have FCC_A1 as an
alias.

{
"refdata": "SGTE91",
"components": ["AL", "NI", "VA"],
"phases": {

"LIQUID" : {
"sublattice_model": [["AL", "NI"]],
"sublattice_site_ratios": [1]
},
"BCC_B2": {
"aliases": ["BCC_A2"],
"sublattice_model": [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]],
"sublattice_site_ratios": [0.5, 0.5, 1],
"equivalent_sublattices": [[0, 1]]
},
"FCC_L12": {

"aliases": ["FCC_A1"],
"sublattice_model": [["AL", "NI"], ["AL", "NI"], ["AL", "NI"], ["AL", "NI"], [

→˓"VA"]],
"sublattice_site_ratios": [0.25, 0.25, 0.25, 0.25, 1],
"equivalent_sublattices": [[0, 1, 2, 3]]
},
"AL3NI1": {
"sublattice_site_ratios": [0.75, 0.25],
"sublattice_model": [["AL"], ["NI"]]
},
"AL3NI2": {
"sublattice_site_ratios": [3, 2, 1],
"sublattice_model": [["AL"], ["AL", "NI"], ["NI", "VA"]]
},
"AL3NI5": {
"sublattice_site_ratios": [0.375, 0.625],
"sublattice_model": [["AL"], ["NI"]]
}

}
}

5.3.3 Units

• Energies are in J/mol-atom (and the derivatives follow)

• All compositions are mole fractions

• Temperatures are in Kelvin

• Pressures in Pascal

5.3.4 Single-phase Data

Two example of ESPEI input file for single-phase data follow. The first dataset has some data for the formation heat
capacity for BCC_B2.

The components and phases keys simply describe those found in this entry. Use the reference key for book-
keeping the source of the data. In solver the sublattice configuration and site ratios are described for the phase.

24 Chapter 5. License

ESPEI Documentation, Release 0.1.3

sublattice_configurations is a list of different configurations, that should correspond to the sublattices
for the phase descriptions. Non-mixing sublattices are represented as a string, while mixing sublattices are repre-
sented as a lists. Thus an endmember for BCC_B2 (as in this example) is ["AL", "NI", VA"] and if there
were mixing (as in the next example) it might be ["AL", ["AL", "NI"], "VA"]. Mixing also means that
the sublattice_occupancies key must be specified, but that is not the case in this example. Regardless
of whether there is mixing or not, the length of this list should always equal the number of sublattices in the
phase, though the sub-lists can have mixing up to the number of components in that sublattice. Note that the
sublattice_configurations is a list of these lists. That is, there can be multiple sublattice configurations
in a single dataset. See the second example in this section for such an example.

The conditions describe temperatures (T) and pressures (P) as either scalars or one-dimensional lists. Most im-
portant to describing data are the output and values keys. The type of quantity is expressed using the output
key. This can in principle be any thermodynamic quantity, but currently only CPM*, SM*, and HM* (where * is either
nothing, _MIX or _FORM) are supported. Support for changing reference states planned but not yet implemented, so
all thermodynamic quantities must be formation quantities (e.g. HM_FORM or HM_MIX, etc.).

The values key is the most complicated and care must be taken to avoid mistakes. values is a 3-dimensional
array where each value is the output for a specific condition of pressure, temperature, and sublattice configurations
from outside to inside. Alternatively, the size of the array must be (len(P), len(T), len(subl_config)).
In the example below, the shape of the values array is (1, 12, 1) as there is one pressure scalar, one sublattice
configuration, and 12 temperatures. The formatting of this can be tricky, and it is suggested to use a NumPy array and
reshape or add axes using np.newaxis indexing.

{
"reference": "Yi Wang et al 2009",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [["AL", "NI", "VA"]],
"comment": "NiAl sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

},
"output": "CPM_FORM",
"values": [[[0],

[-0.0173],
[-0.01205],
[0.12915],
[0.24355],
[0.13305],
[-0.1617],
[-0.51625],
[-0.841],
[-1.0975],
[-1.28045],
[-1.3997]]]

}

In the second example below, there is formation enthalpy data for multiple sublattice configurations. All of
the keys and values are conceptually similar. Here, instead of describing how the output quantity changes
with temperature or pressure, we are instead only comparing HM_FORM values for different sublattice con-
figurations. The key differences from the previous example are that there are 9 different sublattice config-
urations described by sublattice_configurations and sublattice_occupancies. Note that the
sublattice_configurations and sublattice_occupancies should have exactly the same shape. Sub-

5.3. Gathering input data 25

ESPEI Documentation, Release 0.1.3

lattices without mixing should have single strings and occupancies of one. Sublattices that do have mixing should
have a site ratio for each active component in that sublattice. If the sublattice of a phase is ["AL", "NI", "VA"],
it should only have two occupancies if only ["AL", "NI"] are active in the sublattice configuration.

The last difference to note is the shape of the values array. Here there is one pressure, one temperature, and 9
sublattice configurations to give a shape of (1, 1, 9).

{
"reference": "C. Jiang 2009 (constrained SQS)",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

"sublattice_occupancies": [
[1, [0.5, 0.5], 1],
[1, [0.75, 0.25], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1],
[1, [0.25, 0.75], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1]
],

"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [

["AL", ["NI", "VA"], "VA"],
["AL", ["NI", "VA"], "VA"],
["NI", ["AL", "NI"], "VA"],
["NI", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["NI", ["AL", "VA"], "VA"],
["NI", ["AL", "VA"], "VA"],
["VA", ["AL", "NI"], "VA"]

],
"comment": "BCC_B2 sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": 300

},
"output": "HM_FORM",
"values": [[[-40316.61077, -56361.58554,

-49636.39281, -32471.25149, -10890.09929,
-35190.49282, -38147.99217, -2463.55684,
-15183.13371]]]

}

5.3.5 Multi-phase Data

The difference between single- and multi-phase is data is in the absence of the solver key, since we are no longer
concerned with individual site configurations, and the values key where we need to represent phase equilibria
rather than thermodynamic quantities. Notice that the type of data we are entering in the output key is ZPF
(zero-phase fraction) rather than CP_FORM or H_MIX. Each entry in the ZPF list is a list of all phases in equi-
librium, here [["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]] where each
phase entry has the name of the phase, the composition element, and the composition of the tie line point. If
there is no corresponding tie line point, such as on a liquidus line, then one of the compositions will be null:

26 Chapter 5. License

ESPEI Documentation, Release 0.1.3

[["LIQUID", ["NI"], [0.6992]], ["BCC_B2", ["NI"], [null]]]. Three- or n-phase equilib-
ria are described as expected: [["LIQUID", ["NI"], [0.752]], ["BCC_B2", ["NI"], [0.71]],
["FCC_L12", ["NI"], [0.76]]].

Note that for higher-order systems the component names and compositions are lists and should be of length c-1,
where c is the number of components.

{
"components": ["AL", "NI"],
"phases": ["AL3NI2", "BCC_B2"],
"conditions": {

"P": 101325,
"T": [1348, 1176, 977]

},
"output": "ZPF",
"values": [

[["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4456]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4532]]]

],
"reference": "37ALE"

}

5.3.6 Activity Data

Activity data is very similar to thermochemical data, except we must enter a reference state. Another minor detail is
that that non-endmember compositions must be represented by composition conditions rather than as sublattice occu-
pancies because it’s the result of equilibrium calculations where we cannot know the sublattice occupancies. An exam-
ple for Cu-Mg activties follows, with data digitized from S.P. Garg, Y.J. Bhatt, C. V. Sundaram, Thermodynamic study
of liquid Cu-Mg alloys by vapor pressure measurements, Metall. Trans. 4 (1973) 283–289. doi:10.1007/BF02649628.

{
"components": ["CU", "MG", "VA"],
"phases": ["LIQUID"],
"solver": {
"mode": "manual",
"sublattice_site_ratios": [1],
"sublattice_configurations": [["CU", "MG"]]

},
"reference_state": {
"phases": ["LIQUID"],
"conditions": {
"P": 101325,
"T": 1200,
"X_CU": 0.0

}
},
"conditions": {
"P": 101325,
"T": 1200,
"X_CU": [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]

},

"output": "ACR_MG",
"values": [[[0.0057,0.0264,0.0825,0.1812,0.2645,0.4374,0.5852,0.7296,0.882,1.

→˓0]]],

(continues on next page)

5.3. Gathering input data 27

ESPEI Documentation, Release 0.1.3

(continued from previous page)

"reference": "garg1973thermodynamic",
"comment": "Digitized Figure 3 and converted from activity coefficients."

}

5.4 Writing ESPEI input

This page aims to completely describe the ESPEI input file in the YAML format. Possibly useful links are the YAML
refcard and the (possibly less useful) Full YAML specification. These are all key value pairs in the format

key: value

They are nested for purely organizational purposes.

top_level_key:
key: value

As long as keys are nested under the correct heading, they have no required order. All of the possible keys are

system:
phase_models
datasets

output:
verbosity
output_db
tracefile
probfile

generate_parameters:
excess_model
ref_state

mcmc:
mcmc_steps
mcmc_save_interval
cores
scheduler
input_db
restart_chain
chains_per_parameter
chain_std_deviation
deterministic

The next sections describe each of the keys individually. If a setting has a default of required it must be set
explicitly.

5.4.1 system

The system key is intended to describe the specific system you are fitting, including the components, phases, and the
data to fit to.

28 Chapter 5. License

http://www.yaml.org/refcard.html
http://www.yaml.org/refcard.html
http://www.yaml.org/spec/

ESPEI Documentation, Release 0.1.3

phase_models

type string

default required

The JSON file describing the CALPHAD models for each phase. See Phase Descriptions for an example of how to
write this file.

datasets

type string

default required

The path to a directory containing JSON files of input datasets. The file extension to each of the datasets must be
named as .json, but they can otherwise be named freely.

For an examples of writing these input JSON files, see Gathering input data.

5.4.2 output

verbosity

type int

default 0

Controls the logging level.

Value Log Level
0 Warning
1 Info
2 Debug

output_db

type string

default out.tdb

The database to write out. Can be any file format that can be written by a pycalphad Database.

tracefile

type string

default chain.npy

Name of the file that the MCMC trace is written to. The array has shape (number of chains, iterations,
number of parameters).

The array is preallocated and padded with zeros, so if you selected to take 2000 MCMC steps, but only got through
1500, the last 500 values would be all 0.

You must choose a unique file name. An error will be raised if file specified by tracefile already exists.

5.4. Writing ESPEI input 29

https://pycalphad.org/docs/latest/api/pycalphad.io.html?highlight=database#pycalphad.io.database.Database

ESPEI Documentation, Release 0.1.3

probfile

type string

default lnprob.npy

Name of the file that the MCMC ln probabilities are written to. The array has shape (number of chains,
iterations).

The array is preallocated and padded with zeros, so if you selected to take 2000 MCMC steps, but only got through
1500, the last 500 values would be all 0.

You must choose a unique file name. An error will be raised if file specified by probfile already exists.

5.4.3 generate_parameters

The options in generate_parameters are used to control parameter selection and fitting to single phase data.
This should be used if you have input thermochemical data, such as heat capacities and mixing energies.

Generate parameters will use the Akaike information criterion to select model parameters and fit them, creating a
database.

excess_model

type string

default required

options linear

Which type of model to use for excess mixing parameters. Currently only linear is supported.

The exponential model is planned, as well as support for custom models.

ref_state

type string

default required

options SGTE91 | SR2016

The reference state to use for the pure elements and lattice stabilities. Currently only SGTE91 and SR2016 (for certain
elements) is supported.

There are plans to extend to support custom reference states.

5.4.4 mcmc

The options in mcmc control how Markov Chain Monte Carlo is performed using the emcee package.

In order to run an MCMC fitting, you need to specify one and only one source of parameters somewhere in the
input file. The parameters can come from including a generate_parameters step, or by specifying the mcmc.
input_db key with a file to load as pycalphad Database.

If you choose to use the parameters from a database, you can then further control settings based on whether it is the
first MCMC run for a system (you are starting fresh) or whether you are continuing from a previous run (a ‘restart’).

30 Chapter 5. License

https://en.wikipedia.org/wiki/Akaike_information_criterion

ESPEI Documentation, Release 0.1.3

mcmc_steps

type int

default required

Number of iterations to perform in emcee. Each iteration consists of accepting one step for each chain in the ensemble.

mcmc_save_interval

type int

default 20

Controls the interval for saving the MCMC chain and probability files.

cores

type int

min 1

How many cores from available cores to use during parallelization with dask or emcee. If the chosen number of cores
is larger than available, then this value is ignored and espei defaults to using the number available.

Cores does not take affect for MPIPool scheduler option. MPIPool requires the number of processors be set directly
with MPI.

scheduler

type string

default dask

options dask | None | JSON file

Which scheduler to use for parallelization. You can choose from either dask, None, or pass the path to a JSON
scheduler file created by dask-distributed.

Choosing dask allows for the choice of cores used through the cores key.

Choosing None will result in no parallel scheduler being used. This is useful for debugging.

Passing the path to a JSON scheduler file will use the resources set up by the scheduler. JSON file schedulers are most
useful because schedulers can be started on MPI clusters using dask-mpi command. See MPI for more information.

input_db

type string

default null

A file path that can be read as a pycalphad Database. The parameters to fit will be taken from this database.

For a parameter to be fit, it must be a symbol where the name starts with VV, e.g. VV0001. For a TDB formatted
database, this means that the free parameters must be functions of a single value that are used in your parameters. For
example, the following is a valid symbol to fit:

5.4. Writing ESPEI input 31

https://pycalphad.org/docs/latest/api/pycalphad.io.html?highlight=database#pycalphad.io.database.Database

ESPEI Documentation, Release 0.1.3

FUNCTION VV0000 298.15 10000; 6000 N !

restart_chain

type string

default null

If you have run a previous MCMC calculation, then you will have a trace file that describes the position and history of
all of the chains from the run. You can use these chains to start the emcee run and pick up from where you left off in
the MCMC run by passing the trace file (e.g. chain.npy) to this key.

If you are restarting from a previous calculation, you must also specify the same database file (with input_db) as
you used to run that calculation.

chains_per_parameter

type int

default 2

This controls the number of chains to run in the MCMC calculation as an integer multiple of the number of parameters.

This parameter can only be used when initializing the first MCMC run. If you are restarting a calculation, the number
of chains per parameter is fixed by the number you chose previously.

Ensemble samplers require at least 2*p chains for p fitting parameters to be able to make proposals. If
chains_per_parameter = 2, then the number of chains if there are 10 parameters to fit is 20.

The value of chains_per_parameter must be an EVEN integer.

chain_std_deviation

type float

default 0.1

The standard deviation to use when initializing chains in a Gaussian distribution from a set of parameters as a fraction
of the parameter.

A value of 0.1 means that for parameters with values (-1.5, 2000, 50000) the chains will be initialized using
those values as the mean and (0.15, 200, 5000) as standard deviations for each parameter, respectively.

This parameter can only be used when initializing the first MCMC run. If you are restarting a calculation, the standard
deviation for your chains are fixed by the value you chose previously.

You may technically set this to any positive value, you would like. Be warned that too small of a standard deviation
may cause convergence to a local minimum in parameter space and slow convergence, while a standard deviation that
is too large may cause convergence to meaningless thermodynamic descriptions.

deterministic

type bool

default True

32 Chapter 5. License

ESPEI Documentation, Release 0.1.3

Toggles whether ESPEI runs are deterministic. If this is True, running ESPEI with the same Database and initial set-
tings (either the same chains_per_parameter and chain_std_deviation or the same restart_chain)
will result in exactly the same results.

Starting two runs with the same TDB or with parameter generation (which is deterministic) will result in the chains
being at exactly the same position after 100 steps. If these are both restarted after 100 steps for another 50 steps, then
the final chain after 150 steps will be the same.

It is important to note that this is only explictly True when starting at the same point. If Run 1 and Run 2 are started
with the same initial parameters and Run 1 proceeds 50 steps while Run 2 proceeds 100 steps, restarting Run 1 for 100
steps and Run 2 for 50 steps (so they are both at 150 total steps) will NOT give the same result.

5.5 Theory

ESPEI has two types of fitting – parameter generation and MCMC optimization. The parameter generation step uses
experimental and DFT data of the Gibbs free energy derivatives (𝐶𝑃 , 𝐻, 𝑆) for each phase and for the mixing energies
within sublattices for each phase to generate and fit parameters of given CALPHAD models. The MCMC optimization
step uses a Bayesian optimization procedure to fit parameters in a Database to experimental phase equilibria.

5.5.1 Parameter generation

A simple model with few parameters is better than a complex model that describes the same data marginally better.
Parameter generation in ESPEI aims to achieve a balance of a simple parameterization and goodness of fit in the
Redlich-Kister polynomial used in CALPHAD assessments. To achieve this, parameters are selected using the Akaike
information criterion (AIC) to choose an optimal set of parameters from canditate parameterizations.

The general Redlich Kister polynomial has the form 𝐺 = 𝑎+ 𝑏𝑇 + 𝑐𝑇 ln𝑇 +
∑︀

𝑛 𝑑𝑛𝑇
𝑛. Different parameterizations,

e.g. only considering 𝑎, considering 𝑎 and 𝑏, 𝑎 and 𝑐, etc. are fit to all of the input formation or mixing data (depending
on the parameter being selected) by a least squares pseudo-inverse optimization.

Each parameterization is compared in the AIC and the most suitable optimization balances the goodness of fit and the
number of parameters. The key aspect of this is that ESPEI will avoid overfitting your data and will not add parameters
you do not have data for.

This is important for phases that would have a temperature dependent contribution to the Gibbs energy, but the input
data only gives 0K formation energies. ESPEI cannot add temperature dependence to the parameterized model. Be-
cause of this, an abundance of single-phase data is critical to provide enough degrees of freedom in later optimization.

5.5.2 MCMC optimization

Details of Markov Chain Monte Carlo as an algorithm are better covered elsewhere. A good example is MacKay’s
(free) book: Information Theory, Inference, and Learning Algorithms.

Using MCMC for optimizing CALPHAD models might appear to have several drawbacks. The parameters in the
models are correlated and due to the nature of single phase first-principles data the shape and size of the posterior
distribution for each parameter is not known before fitting. Traditional Metropolis-Hastings MCMC algorithms require
the a prior to be defined for each parameter, which is a challenge for parameters in CALPHAD models which vary
over more than 6 orders of magnitude.

ESPEI solves these potential problems by using an Ensemble sampler, as introduced by Goodman and Weare1, rather
than the Metropolis-Hastings algorithm. Ensemble samplers have the property of affine invariance, which uses multiple
(≥ 2𝑁 for 𝑁 parameters) parallel chains to scale new proposal parameters by linear transforms. These chains, together

1 Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
doi:10.2140/camcos.2010.5.65.

5.5. Theory 33

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
http://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.2140/camcos.2010.5.65

ESPEI Documentation, Release 0.1.3

an ensemble, define a proposal distribution to sample parameters from that is scaled to the magnitude and sensitivity
of each parameter. Thus, Ensemble samplers directly address the challenges we expect to encounter with traditional
MCMC.

ESPEI uses an Ensemble sampler algorithm by using the emcee package that implements parallelizable ensemble
samplers. To use emcee, ESPEI defines the initial ensemble of chains and a function that returns the error as a log-
probability. ESPEI defines the error as the mean square error between experimental phase equilibria and the equilibria
calculated by the CALPHAD database.

Here, again, it is critical to point out the importance of abundant phase equilibria data. Traditional CALPHAD mod-
eling has involved the modeler participating in tight feedback loops between updates to parameters and the resulting
phase diagram. ESPEI departs from this by optimizing just a single scalar error function based on phase equilibria.
The implication of this is that if there are phase equilibria that are observed to exist, but they are not in the datasets
that are considered by ESPEI, those equilibria cannot be optimized against and may deviate from ‘known’ equilibria.
A possible approach to address this in ESPEI is to estimate the points for the equilibria.

5.5.3 References

5.6 MPI

5.6.1 Overview

ESPEI uses dask-distributed for MPI parallelization. To use this, you need to start a dask scheduler outside of ESPEI
rather than depending on ESPEI to start one for you. dask provides a dask-mpi command that sets this up for you
and creates a scheduler file to pass to ESPEI. The scheduler information will be serialized as a JSON file that you set
in your ESPEI input file.

After starting the scheduler on the cluster, you run ESPEI like normal.

5.6.2 ESPEI Input

For the most part, this ESPEI input file is the same as you use locally, except the scheduler parameter is set to the
name of your scheduler file.

Here is an example for multiphase fitting starting from a generated TDB with a scheduler file named
my-scheduler.json:

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
mcmc_steps: 1000
input_db: my-tdb.tdb
scheduler: my-scheduler.json

5.6.3 Example Batch Script

To start this scheduler and create the scheduler file, you run dask-mpi via mpirun (or other MPI executable). Since
many MPI jobs are run through batch schedulers, an example script for a PBS job looks like:

34 Chapter 5. License

http://dan.iel.fm/emcee/current/

ESPEI Documentation, Release 0.1.3

#!/bin/bash

#PBS -l nodes=1:ppn=20
#PBS -l walltime=48:00:00
#PBS -A open
#PBS -N espei-mpi
#PBS -o espei-mpi.out
#PBS -e espei-mpi.error

starts the scheduler on MPI and creates the scheduler file called 'my_scheduler.json
→˓'
mpirun dask-mpi --scheduler-file my_scheduler.json --nthreads 1 &

runs ESPEI as normal
espei --in espei-mpi-input.yaml

5.6.4 References

See http://distributed.readthedocs.io/en/latest/setup.html?highlight=dask-mpi#using-mpi for more details.

5.6. MPI 35

http://distributed.readthedocs.io/en/latest/setup.html?highlight=dask-mpi#using-mpi

ESPEI Documentation, Release 0.1.3

36 Chapter 5. License

ESPEI Documentation, Release 0.1.3

5.7 API Documentation

5.7.1 espei package

Subpackages

espei.error_functions package

Submodules

espei.error_functions.activity_error module

espei.error_functions.thermochemical_error module

espei.error_functions.zpf_error module

Module contents

espei.tests package

Submodules

espei.tests.fixtures module

espei.tests.test_core_utils module

espei.tests.test_datasets module

espei.tests.test_error_functions module

espei.tests.test_mcmc module

espei.tests.test_parameter_generation module

espei.tests.test_schema module

espei.tests.test_utils module

espei.tests.testing_data module

Module contents

Submodules

espei.core_utils module

espei.datasets module

espei.espei_script module

espei.mcmc module

espei.paramselect module

espei.plot module

espei.refdata module

espei.rstate module

espei.utils module

Module contents

5.8 Contributing to ESPEI

5.8.1 Installing in develop mode

It is suggested to use ESPEI in development mode if you will be contributing features to the source code. As usual,
you should install ESPEI into a virtual environment.

5.7. API Documentation 37

ESPEI Documentation, Release 0.1.3

All of the dependencies can be installed either by conda or pip.

Then clone the source and install ESPEI in development mode with pip:

git clone https://github.com/PhasesResearchLab/espei.git
pip install --editable espei

Even if you use Anaconda, it is recommended that you use either pip or python setup.py develop to install
ESPEI in development mode. This is because the conda-build tool, which would typically be used for this, is not
well maintained at the time of writing.

Develop mode on Windows

Because of compiler issues, ESPEI’s dependencies are challenging to install on Windows. As mentioned above, ideally
the conda-build tool could be used, but it is not able to be used. Therefore the recommended way to install ESPEI
is to

1. Install ESPEI into a virtual environment from Anaconda, pulling all of the packages with it

2. Remove ESPEI without removing the other packages

3. Install ESPEI in develop mode with pip or setuptools from the source repository

The steps to do this on the command line are as follows

conda create -n espei_dev espei
activate espei_dev
conda remove --force espei
git clone https://github.com/PhasesResearchLab/espei.git
pip install --editable espei

5.8.2 Tests

Even though much of ESPEI is devoted to being a multi-core, stochastic user tool, we strive to test all logic and
functionality. We are continuously maintaining tests and writing tests for previously untested code.

As a general rule, any time you write a new function or modify an existing function you should write or maintain a
test for that function.

ESPEI uses pytest as a test runner.

Some tips for testing:

• Ideally you would practicing test driven development by writing tests of your intended results before you write
the function.

• If possible, keep the tests small and fast. If you do have a long running tests (longer than ~15 second run time)
mark the test with the @pytest.mark.slow decorator.

• See the NumPy/SciPy testing guidelines for more tips

5.8.3 Style

Code style

For most naming and style, follow PEP8. One exception to PEP8 is regarding the line length, which we suggest a 120
character maximum, but may be longer within reason.

38 Chapter 5. License

https://pytest.org
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://www.python.org/dev/peps/pep-0008/

ESPEI Documentation, Release 0.1.3

Code documentation

ESPEI uses the NumPy documentation style. All functions and classes should be documented with at least a descrip-
tion, parameters, and return values, if applicable.

Using Examples in the documentation is especially encouraged for utilities that are likely to be run by users. See
espei.plot.multiplot() for an example.

If you add any new external (non-ESPEI) imports in any code, they must be added to the MOCK_MODULES list in
docs/conf.py.

Web documention

Documentation on ESPEI is split into user tutorials, reference and developer documentation.

• Tutorials are resources for users new to ESPEI or new to certain features of ESPEI to be guided through typical
actions.

• Reference pages should be concise articles that explain how to complete specific goals for users who know what
they want to accomplish.

• Developer documentation should describe what should be considered when contributing source code back to
ESPEI.

5.8.4 Logging

Since ESPEI is intended to be run by users, we must provide useful feedback on how their runs are progressing. ESPEI
uses the logging module to allow control over verbosity of the output.

There are 5 different logging levels provided by Python. They should be used as follows:

Critical or Error (logging.critical or logging.error) Never use these. These log levels would only be
used when there is an unrecoverable error that requires the run to be stopped. In that case, it is better to raise
an appropriate error instead.

Warning (logging.warning) Warnings are best used when we are able to recover from something bad that has
happened. The warning should inform the user about potentially incorrect results or let them know about some-
thing they have the potential to fix. Again, anything unrecoverable should not be logged and should instead be
raised with a good error message.

Info (logging.info) Info logging should report on the progress of the program. Usually info should give feedback
on milestones of a run or on actions that were taken as a result of a user setting. An example of a milestone is
starting and finishing parameter generation. An example of an action taken as a result of a user setting is the
logging of the number of chains in an mcmc run.

Debug (logging.debug) Debugging is the lowest level of logging we provide in ESPEI. Debug messages should
consist of possibly useful information that is beyond the user’s direct control. Examples are the values of initial
parameters, progress of checking datasets and building phase models, and the acceptance ratios of MCMC steps.

5.8. Contributing to ESPEI 39

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

ESPEI Documentation, Release 0.1.3

40 Chapter 5. License

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

41

	Installation
	Anaconda (recommended)
	PyPI
	Development versions

	Usage
	Single-phase only
	Multi-phase only
	Restart from previous run-phase only
	Full run
	Input Customization
	FAQ

	Getting Help
	Module Hierarchy
	License
	What’s New
	Cu-Mg Example
	Gathering input data
	Writing ESPEI input
	Theory
	MPI
	API Documentation
	Contributing to ESPEI

	Indices and tables

