
ESPEI Documentation
Release 0.7.7

Brandon Bocklund

Nov 10, 2020

Contents

I Introduction 1

1 Installation 3

2 Quickstart 5

3 References 9

4 What is ESPEI? 11

5 What ESPEI can do? 13

6 Goals 15

7 History 17

8 Change log 19

II Tutorials 29

9 Cu-Mg example 31

III How-to 43

10 YAML input files 45

11 Specifying Priors 55

12 Making ESPEI datasets 59

13 Recipes 67

14 Use a custom unary reference state 75

IV Reference 81

15 Advanced Schedulers 83

i

V Developer 127

16 Contributing to ESPEI 129

17 Software design 133

VI Appendix 137

18 Appendices 139

Python Module Index 141

Index 143

ii

Part I

Introduction

1

CHAPTER 1

Installation

1.1 Anaconda

Installing ESPEI from PyPI (by pip install espei) is not supported. Please install ESPEI using Anaconda.

conda install -c pycalphad -c conda-forge --yes espei

After installation, you must turn off dask’s work stealing. Change the work stealing setting to distributed.
scheduler.work-stealing: False in dask’s configuration. See configuration below for more details.

1.2 Development versions

To make changes to the ESPEI source code, the development version must be installed. If you’ll need to make changes
to pycalphad simultaneously, follow the instructions to install the development version of pycalphad first.

To install the latest development version of ESPEI, use Anaconda to download ESPEI and all of the required depen-
dencies, then remove the installed release version of ESPEI and replace it with the latest version from GitHub:

git clone https://github.com/phasesresearchlab/espei.git
cd espei
conda install -c pycalphad -c conda-forge espei
conda remove --force espei
pip install --no-deps -e .

Upgrading ESPEI later requires you to run git pull in this directory.

After installation, you must turn off dask’s work stealing. Change the work stealing setting to distributed.
scheduler.work-stealing: False in dask’s configuration. See configuration below for more details.

3

https://pycalphad.org/docs/latest/INSTALLING.html#development-versions-advanced-users

ESPEI Documentation, Release 0.7.7

1.3 Configuration

ESPEI uses dask-distributed to parallelize ESPEI.

After installation, you must turn off dask’s work stealing! Change the your dask configuration file to look something
like:

distributed:
version: 2
scheduler:
work-stealing: False

The configuration file paths can be found by running from espei.utils import
get_dask_config_paths; get_dask_config_paths() in a Python interpreter. If multiple config-
urations are found, the latter configurations take precendence over the former, so check them from last to first. See the
dask-distributed documentation for more.

4 Chapter 1. Installation

https://distributed.readthedocs.io/en/latest/configuration.html

CHAPTER 2

Quickstart

ESPEI has two different fitting modes: parameter generation and Bayesian parameter estimation, which uses Markov
Chain Monte Carlo (MCMC). You can run either of these modes or both of them sequentially.

To run either of the modes, you need to have a phase models file that describes the phases in the system using the
standard CALPHAD approach within the compound energy formalism. You also need to describe the data that ESPEI
should fit to. You will need single-phase and multi-phase data for a full run. Fit settings and all datasets are stored as
JSON files and described in detail at the Making ESPEI datasets page. All of your input datasets should be validated
by running espei --check-datasets my-input-datasets, where my-input-datasets is a folder
of all your JSON files.

The main output result is going to be a database (defaults to out.tdb), an array of the steps in the MCMC trace
(defaults to trace.npy), and the an array of the log-probabilities for each iteration and chain (defaults to lnprob.
npy).

2.1 Parameter Generation only

If you have only non-equilibrium thermochemical data, e.g. heat capacity, entropy and enthalpy data and mixing data
from first-principles calculations, you may want to see the starting point for your MCMC calculation.

Create an input file called espei-in.yaml.

system:
phase_models: my-phases.json
datasets: my-input-datasets

generate_parameters:
excess_model: linear
ref_state: SGTE91

Then ESPEI can be run by running

espei --input espei-in.yaml

5

ESPEI Documentation, Release 0.7.7

2.2 Bayesian Parameter Estimation (MCMC) only

If you have a database already and want to do a Bayesian parameter estimation, you can specify a starting TDB file
(named my-tdb.tdb) with

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
iterations: 1000
input_db: my-tdb.tdb

The TDB file you input must have all of the degrees of freedom you want as FUNCTIONs with names beginning with
VV.

2.3 Restart from previous run-phase only

If you’ve run an MCMC fitting already in ESPEI and have a trace file called my-previous-trace.npy , then you
can resume the calculation with the following input file

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
iterations: 1000
input_db: my-tdb.tdb
restart_trace: my-previous-trace.npy

2.4 Full run

A minimal full run of ESPEI is done by the following

system:
phase_models: my-phases.json
datasets: my-input-data

generate_parameters:
excess_model: linear
ref_state: SGTE91

mcmc:
iterations: 1000

2.5 Input Customization

ESPEI lets you control many aspects of your calculations with the input files shown above. See ESPEI YAML input
files for a full description of all possible inputs.

6 Chapter 2. Quickstart

ESPEI Documentation, Release 0.7.7

2.6 FAQ

2.6.1 Q: There is an error in my JSON files

A: Common mistakes are using single quotes instead of the double quotes required by JSON files. Another common
source of errors is misaligned open/closing brackets.

Many mistakes are found with ESPEI’s check-datasets utility. Run espei check-datasets
my-input-datasets on your directory my-input-datasets.

2.6.2 Q: How do I analyze my results?

A: By default, ESPEI will create trace.npy and lnprob.npy for the MCMC chain at the specified save interval
and according to the save interval (defaults to ever iteration). These are created from arrays via numpy.save()
and can thus be loaded with numpy.load(). Note that the arrays are preallocated with zeros. These filenames and
settings can be changed using in the input file. You can then use these chains and corresponding log-probabilities to
make corner plots, calculate autocorrelations, find optimal parameters for databases, etc.. Some examples are shown
in the Recipes page. Finally, you can use py:mod:espei.plot functions such as multiplot to plot phase diagrams
with your input equilibria data and plot_parameters to compare single-phase data (e.g. formation and mixing
data) with the properties calculated with your database.

2.6.3 Q: Can I run ESPEI on a supercomputer supporting MPI?

A: Yes! ESPEI has MPI support. See the Advanced Schedulers page for more details.

2.6.4 Q: How is the log probability reported by ESPEI calculated?

MCMC simulation requires determining the probability of the data given a set of parameters, 𝑝(𝐷|𝜃). In MCMC,
the log probability is often used to avoid floating point errors that arise from multiplying many small floating point
numbers. For each type of data the error, often interpreted as the absolute difference between the expected and
calculated value, is determined. For the types of data and how the error is calculated, refer to the ESPEI paper1.

The error is assumed to be normally distributed around the experimental data point that the prediction of a set of
parameters is being compared against. The log probability of each data type is calculated by the log probability
density function of the error in this normal distribution with a mean of zero and the standard deviation as given by the
data type and the adjustable weights (see data_weights in ESPEI YAML input files). The total log probability is
the sum of all log probabilities.

Note that any probability density function always returns a positive value between 0 and 1, so the log probability
density function should return negative numbers and the log probability reported by ESPEI should be negative.

2.6.5 Q: Why is the version of ESPEI ‘0+unknown’?

A: A version number of '0+unknown' indicates that you do not have git installed. This can occur on Windows
where git is not in the PATH (and the Python interpreter cannot see it). You can install git using conda install
git on Windows.

1

B. Bocklund, R. Otis, A. Egorov, A. Obaied, I. Roslyakova, Z.-K. Liu, ESPEI for efficient thermodynamic database development, modification,
and uncertainty quantification: application to Cu-Mg, (2019). http://arxiv.org/abs/1902.01269.

2.6. FAQ 7

http://arxiv.org/abs/1902.01269

ESPEI Documentation, Release 0.7.7

2.6.6 Q: I have a large database, can I use ESPEI to optimize parameters in only a
subsystem?

A: Yes, if you have a multicomponent CALPHAD database, but want to optimize or determine the uncertainty for a
constituent unary, binary or ternary subsystem that you have data for, you can do that without any extra effort.

You may be interested in the symbols input parameter to specify which parameter subset to optimize.

Note that if you optimize parameters in a subsystem (e.g. Cu-Mg) that is used in a higher order description (e.g.
Al-Cu-Mg), you may need to reoptimize the parameters for the higher order system as well.

8 Chapter 2. Quickstart

CHAPTER 3

References

ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for thermodynamic database develop-
ment within the CALPHAD method. It uses pycalphad for calculating Gibbs free energies of thermodynamic models.

Upcoming Workshops

• Software Tools from Atomistics to Phase Diagrams (November 10 and 11, 2020): REGISTRATION CLOSED

• Software Tools from Atomistics to Phase Diagrams (December 8 and 9, 2020): REGISTRATION COMING
SOON

9

http://pycalphad.org
https://workshop.materialsgenomefoundation.org
https://workshop.materialsgenomefoundation.org

ESPEI Documentation, Release 0.7.7

10 Chapter 3. References

CHAPTER 4

What is ESPEI?

1. ESPEI parameterizes CALPHAD models with enthalpy, entropy, and heat capacity data using the corrected
Akiake Information Criterion (AICc). This parameter generation step augments the CALPHAD modeler by
providing tools for data-driven model selection, rather than relying on a modeler’s intuition alone.

2. ESPEI optimizes CALPHAD model parameters to thermochemical and phase boundary data and quantifies the
uncertainty of the model parameters using Markov Chain Monte Carlo (MCMC). This is similar to the PARROT
module of Thermo-Calc, but goes beyond by adjusting all parameters simultaneously and evaluating parameter
uncertainty.

Details on the implementation of ESPEI can be found in the publication: B. Bocklund et al., MRS Communications
9(2) (2019) 1–10. doi:10.1557/mrc.2019.59.

11

https://doi.org/10.1557/mrc.2019.59

ESPEI Documentation, Release 0.7.7

12 Chapter 4. What is ESPEI?

CHAPTER 5

What ESPEI can do?

ESPEI can be used to generate model parameters for CALPHAD models of the Gibbs energy that follow the
temperature-dependent polynomial by Dinsdale (CALPHAD 15(4) 1991 317-425) within the compound energy for-
malism (CEF) for endmembers and Redlich-Kister-Mugganu excess mixing parameters in unary, binary and ternary
systems.

All thermodynamic quantities are computed by pycalphad. The MCMC-based Bayesian parameter estimation can
optimize data for any model that is supported by pycalphad, including models beyond the endmember Gibbs energies
Redlich-Kister-Mugganiu excess terms, such as parameters in the ionic liquid model, magnetic, or two-state models.
Performing Bayesian parameter estimation for arbitrary multicomponent thermodynamic data is supported.

13

ESPEI Documentation, Release 0.7.7

14 Chapter 5. What ESPEI can do?

CHAPTER 6

Goals

1. Offer a free and open-source tool for users to develop multicomponent databases with quantified uncertainty

2. Enable development of CALPHAD-type models for Gibbs energy, thermodynamic or kinetic properties

3. Provide a platform to build and apply novel model selection, optimization, and uncertainty quantification meth-
ods

The implementation for ESPEI involves first performing parameter generation by calculating parameters in thermody-
namic models that are linearly described by non-equilibrium thermochemical data. Then Markov Chain Monte Carlo
(MCMC) is used to optimize the candidate models from the parameter generation to phase boundary data.

15

ESPEI Documentation, Release 0.7.7

Fig. 1: Cu-Mg phase diagram from a database created with and optimized by ESPEI. See the Cu-Mg Example.

16 Chapter 6. Goals

CHAPTER 7

History

The ESPEI package is based on a fork of pycalphad-fitting. The name and idea of ESPEI are originally based off of
Shang, Wang, and Liu, ESPEI: Extensible, Self-optimizing Phase Equilibrium Infrastructure for Magnesium Alloys
Magnes. Technol. 2010 617-622 (2010).

Implementation details for ESPEI have been described in the following publications:

• B. Bocklund et al., MRS Communications 9(2) (2019) 1–10. doi:10.1557/mrc.2019.59

• R. Otis et al., JOM 69 (2017) doi:10.1007/s11837-017-2318-6

• Richard Otis’s thesis

17

https://github.com/richardotis/pycalphad-fitting
http://www.phases.psu.edu/wp-content/uploads/2010-Shang-Shunli-MagTech-ESPEI-0617-1.pdf
https://doi.org/10.1557/mrc.2019.59
http://doi.org/10.1007/s11837-017-2318-6
https://etda.libraries.psu.edu/catalog/s1784k73d

ESPEI Documentation, Release 0.7.7

18 Chapter 7. History

CHAPTER 8

Change log

8.1 What’s New

8.1.1 0.7.8 (2020-11-10)

This is a bug fix release with backwards compatible changes.

• Fix a bug trigged by pycalphad 0.8.4 where the new parameter extraction behavior could break the MCMC
sampler (@bocklund - issue 132)

• Fix a bug where some feature matrices had incorrect shape, stemming from using SymPy.Matrix to symbolically
manipulate the data (@bocklund - issue 130)

• Migrate to tinydb v4+ (@bocklund - issue 126)

8.1.2 0.7.7 (2020-04-11)

This is a minor feature and bug fix release with backwards compatible changes.

• Preliminary support for thermochemical error for arbitrary properties (@bocklund - issue 124)

• Update the preferred method for disabling tracefile, probfile, logfile, and no scheduler in YAML to use null
instead of "None" (@bocklund - issue 125)

• Fix a bug in truncate_arrays and optimal_parameters to allow some zeros (@bocklund - issue
122)

• Enable custom unary reference states for parameter generation with entry_points plugin system (@bocklund -
issue 121)

8.1.3 0.7.6 (2020-03-27)

This is a minor bug fix release.

19

https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/132
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/130
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/126
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/124
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/125
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/122
https://github.com/PhasesResearchLab/ESPEI/issues/122
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/121

ESPEI Documentation, Release 0.7.7

• Fixes a bug introduced in 0.7.5 for calculating likelihood for phase boundary data under equilibrium failures
(@bocklund - issue 120)

• Since Python 2 was dropped, six has been removed as a dependency (@bocklund - issue 119)

8.1.4 0.7.5 (2020-03-09)

This release includes performance optimizations, bugfixes and new features for MCMC simulations.

• This version of ESPEI now requires pycalphad 0.8.2 or later for the features below.

• Fitting subsystems of a large database is explictly supported and tested for all implemented MCMC data types.
Fixes a bug in ZPF error and activity error where having phases in the database that are inactive in the subsystem
would raise errors (@bocklund - issue 118).

• Computing thermochemical error and phase boundary (ZPF) error are now optimized to reduce overhead time
in dependencies (@bocklund - issue 117)

• A new feature for calculating approximate driving force for phase boundary data is implemented, which can
give performance improvements of 3x-10x, depending on the system (@bocklund - issue 115)

8.1.5 0.7.4 (2019-12-09)

This release includes small fixes for parameter generation.

• Excluded model contributions are fixed for models with different sublattice site ratios and for data that are not
endmembers (@bocklund - issue 113)

8.1.6 0.7.3 (2019-12-02)

This change includes several new features and performance improvements.

• Drop Python 2 support (Python 2 is no longer supported on January 1, 2020).

• Update dask and distributed support to versions >=2. (@bocklund)

• Users can tweak the AICc penalty factor for each phase to nudge parameter selection towards adding more or
fewer parameters based on user modeling intitution. (@bocklund)

• Allow for tracefile and probfile to be set to None. (@jwsiegel2510)

• Weighting individual datasets in single phase fitting is now implemented via scikit-learn. (@bocklund)

• Performance improvements by reducing overhead. (@bocklund)

• Increased solver accuracy by using pycalphad’s exact Hessian solver. (@bocklund)

• Support writing SER reference state information to the ELEMENT keyword in TDBs based on the SGTE unary
5 database. (@bocklund)

• MCMC now calculates the likelihood of the initial parameter set so the starting point can be reasonably com-
pared. (@bocklund)

• Fixed a bug where mis-aligned configurations and site occupancies in single phase datasets passed the dataset
checker (@bocklund)

8.1.7 0.7.2 (2019-06-12)

This is a small bugfix release that fixes the inability to provide the EmceeOptimizer a restart_trace.

20 Chapter 8. Change log

https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/120
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/119
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/118
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/117
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/115
https://github.com/bocklund
https://github.com/PhasesResearchLab/ESPEI/issues/113
https://github.com/bocklund
https://github.com/bocklund
https://github.com/jwsiegel2510
https://github.com/bocklund
https://github.com/bocklund
https://github.com/bocklund
https://github.com/bocklund
https://github.com/bocklund
https://github.com/bocklund

ESPEI Documentation, Release 0.7.7

8.1.8 0.7.1 (2019-06-03)

This is a significant update reflecting many internal improvements, new features, and bugfixes. Users using the YAML
input or the run_espei Python API should see entirely backwards compatible changes with ESPEI 0.6.2.

pycalphad 0.8, which introduced many key features for these changes is now required. This should almost completely
eliminate the time to build phases due to the symengine backend (phases will likely build in less time than to call the
MCMC objective function). Users can expect a slight performance improvement for MCMC fitting.

Improvements

• Priors can now be specified and are documented online.

• Weights for different datasets are added and are supported by a "weight" key at the top level of any dataset.

• Weights for different types of data are added. These are controlled via the input YAML and are documented
there.

• A new internal API is introduced for generic fitting of parameters to datasets in the OptimizerBase class.
The MCMC optimizer in emcee was migrated to this API (the mcmc_fit function is now deprecated, but still
works until the next major version of ESPEI). A simple SciPy-based optimizer was implemented using this API.

• Parameter selection can now be passed initial databases with parameters (e.g. for adding magnetic or other
parameters manually).

• pycalphad’s reference state support can now be used to properly reference out different types of model contri-
butions (ideal mixing, magnetic, etc.). This is especially useful for DFT thermochemical data which does not
include model contributions from ideal mixing or magnetic heat capacity. Useful for experimental data which
does include ideal mixing (previously ESPEI assumed all data

• Datasets and input YAML files now have a tag system where tags that are specified in the input YAML can over-
ride any keys/values in the JSON datasets at runtime. This is useful for tagging data with different weights/model
contribution exclusions (e.g. DFT tags may get lower weights and can be set to exclude model contributions). If
no tags are applied, removing ideal mixing from all thermochemical data is applied automatically for backwards
compatibility. This backwards compatibility feature will be removed in the next major version of ESPEI (all
model contributions will be included by default and exclusions must be specified manually).

Bug fixes

• Bug fixed where asymmetric ternary parameters were not properly replaced in SymPy

• Fixed error where ZPF error was considering the chemical potentials of stoichiometric phases in the target
hyperplane (they are meaningless)

• Report the actual file paths when dask’s work-stealing is set to false.

• Errors in the ZPF error function are no longer swallowed with -np.inf error. Any errors should be reported as
bugs.

• Fix bug where subsets of symbols to fit are not built properly for thermochemical data

Other

• Documentation recipe added for plot_parameters

• [Developer] ZPF and thermochemical datasets now have an function to get all the data up front in a dictionary
that can be used in the functions for separation of concerns and calculation efficiency by not recalculating the
same thing every iteration.

8.1. What’s New 21

https://pycalphad.org/docs/latest/CHANGES.html

ESPEI Documentation, Release 0.7.7

• [Developer] a function to generate the a context dict to pass to lnprob now exists. It gets the datasets automati-
cally using the above.

• [Developer] transition to pycalphad’s new build_callables function, taking care of the v.N state variable.

• [Developer] Load all YAML safely, silencing warnings.

8.1.9 0.6.2 (2018-11-27)

This backwards-compatible release includes several bug fixes and improvements.

• Updated branding to include the new ESPEI logo. See the logo in the docs/_static directory.

• Add support for fitting excess heat capacity.

• Bug fix for broken potassium unary.

• Documentation improvements for recipes

• pycalphad 0.7.1 fixes for dask, sympy, and gmpy2 should mean that ESPEI should not require
package upgrade or downgrades. Please report any installations issues in ESPEI’s Gitter Channel
<https://gitter.im/PhasesResearchLab/ESPEI>.

• [Developers] ESPEI’s eq_callables_dict is now pycalphad.codegen.callables.
build_callables.

• [Developers] matplotlib plotting tests are removed because nose is no longer supported.

8.1.10 0.6.1 (2018-08-28)

This a major release with several important features and bug fixes.

• Enable use of ridge regression alpha for parameter selection via the parameter_generation.
ridge_alpha input parameter.

• Add ternary parameter selection. Works by default, just add data.

• Set memory limit to zero to avoid dask killing workers near the dask memory limits.

• Remove ideal mixing from plotting models so that plot_parameters gives the correct entropy values.

• Add recipes documentation that contains some Python code for common utility operations.

• Add documentation for running custom distributed schedulers in ESPEI

8.1.11 0.6 (2018-07-02)

This is a update including breaking changes to the input files and several minor improvements.

• Update input file schema and Python API to be more consistent so that the trace always refers to the collection
of chains and chain refers to individual chains. Additionally removed some redundancy in the parameters
nested under the mcmc heading, e.g. mcmc_steps is now iterations and mcmc_save_interval is
now save_interval in the input file and Python API. See Writing Input documentation for all of the updates.

• The default save interval is now 1, which is more reasonable for most MCMC systems with significant numbers
of phase equilibria.

• Bug fixes for plotting and some better plotting defaults for plotting input data

• Dataset parsing and cleaning improvements.

22 Chapter 8. Change log

https://github.com/PhasesResearchLab/ESPEI/blob/master/docs/recipes.rst
http://espei.org/en/latest/writing_input.html

ESPEI Documentation, Release 0.7.7

• Documentation improvements (see the PDF!)

8.1.12 0.5.2 (2018-04-28)

This is a major bugfix release for MCMC multi-phase fitting runs for single phase data.

• Fixed a major issue where single phase thermochemical data was always compared to Gibbs energy, giving
incorrect errors in MCMC runs.

• Single phase errors in ESPEI incorrectly compared values with ideal mixing contributions to data, which is
excess only.

• Fixed a bug where single phase thermochemical data with that are dependent on composition and pressure and/or
temperature were not fit correctly.

• Added utilities for analyzing ESPEI results and add them to the Cu-Mg example docs.

8.1.13 0.5.1 (2018-04-17)

This is a minor bugfix release.

• Parameter generation for phases with vacancies would produce incorrect parameters because the vacancy site
fractions were not being correctly removed from the contributions due to their treatment as Species objects
in pycalphad >=0.7.

8.1.14 0.5 (2018-04-03)

• Parameter selection now uses the corrected AIC, which further prevents overparameterization where there is
sparse training data.

• Activity and single phase thermochemical data can now be included in MCMC fitting runs. Including single
phase data can help anchor metastable phases to DFT data when they are not on the stable phase diagram. See
the Gathering input data documentation for information on how to input activity data.

• Dataset checking has been improved. Now there are checks to make sure sublattice interactions are properly
sorted and mole fractions sum to less than 1.0 in ZPF data.

• Support for fitting phases with arbitrary pycalphad Models in MCMC, including (charged and neutral) species
and ionic liquids. There are several consequences of this:

– ESPEI requires support on pycalphad >=0.7

– ESPEI now uses pycalphad Model objects directly. Using the JIT compiled Models has shown up to a
50% performance improvement in MCMC runs.

– Using JIT compiled Model objects required the use of cloudpickle everywhere. Due to challenges
in overriding pickle for upstream packages, we now rely solely on dask for scheduler tasks, including
mpi via dask-mpi. Note that users must turn off work-stealing in their ~/.dask/config.
yaml file.

• [Developers] Each method for calculating error in MCMC has been moved into a module for that method in
an error_functions subpackage. One top level function from each module should be imported into the
mcmc.py and used in lnprob. Developers should then just customize lnprob.

• [Developers] Significant internal docs improvements: all non-trivial functions have complete docstrings.

8.1. What’s New 23

http://readthedocs.org/projects/espei/downloads/pdf/latest/
http://espei.org/en/latest/input_data.html

ESPEI Documentation, Release 0.7.7

8.1.15 0.4.1 (2018-02-05)

• Enable plotting of isothermal sections with data using dataplot (and multiplot, etc.)

• Tielines are now plotted in dataplot for isothermal sections and T-x phase diagrams

• Add a useful ravel_conditions method to unpack conditions from datasets

8.1.16 0.4 (2017-12-29)

• MCMC is now deterministic by default (can be toggled off with the mcmc.deterministic setting).

• Added support for having no scheduler (running with no parallelism) with the mcmc.scheduler option set
to None. This may be useful for debugging.

• Logging improvements

– Extraneous warnings that may be confusing for users and dirty the log are silenced.

– A warning is added for when there are no datasets found.

– Fixed a bug where logging was silenced with the dask scheduler

• Add optimal_parameters utility function as a helper to get optimal parameter sets for analysis

• Several improvements to plotting

– Users can now plot phase diagram data alone with dataplot, useful for checking datasets visually. This
changes the API for dataplot to no longer infer the conditions from an equilibrium Dataset (from
pycalphad). That functionality is preserved in eqdataplot.

– Experimental data points are now plotted with unique symbols depending on the reference key in the
dataset. This is for both phase diagram and single phase parameter plots.

– Options to control plotting parameters (e.g. symbol size) and take user supplied Axes and Figures in the
plotting functions. The symbol size is now smaller by default.

• Documentation improvements for API and separation of theory from the Cu-Mg example

• Fixes a bug where elements with single character names would not find the correct reference state (which are
typically named GHSERCC for the example of C).

• [Developer] All MCMC code is moved from the paramselect module to the mcmc module to separate these
tasks

• [Developer] Support for arbitrary user reference states (so long as the reference state is in the refdata module
and follows the same format as SGTE91)

8.1.17 0.3.1.post2 (2017-10-31)

• Propagate the new entry point to setup.py

8.1.18 0.3.1.post1 (2017-10-31)

• Fix for module name/function conflict in entry point

24 Chapter 8. Change log

ESPEI Documentation, Release 0.7.7

8.1.19 0.3.1 (2017-10-31)

• ESPEI is much easier to run interactively in Python and in Jupyter Notebooks

• Reference data is now included in ESPEI instead of in pycalphad

• Several reference data fixes including support for single character elements (‘V’, ‘B’, ‘C’, . . .)

• Support for using multiprocessing to parallelize MCMC runs, used by default (@olivia-higgins)

• Improved documentation for installing and developing ESPEI

8.1.20 0.3.post2 (2017-09-20)

• Add input-schema.yaml file to installer

8.1.21 0.3.post1 (2017-09-20)

• Add LICENSE to manifest

8.1.22 0.3 (2017-09-20)

• ESPEI input is now described by a file. This change is breaking. Old command line arguments are not
supported. See Writing input files for a full description of all the inputs.

• New input options are supported, including modifying the number of chains and standard deviation from the
mean

• ESPEI is now available on conda-forge

• TinyDB 2 support is dropped in favor of TinyDB 3 for conda-forge deployment

• Allow for restarting previous mcmc calculations with a trace file

• Add Cu-Mg example to documentation

8.1.23 0.2.1 (2017-08-17)

Fixes to the 0.2 release plotting interface

• multiplot is renamed from multi_plot, as in docs.

• Fixed an issue where phases in datasets, but not in equilibrium were not plotted by dataplot and raised an error.

8.1.24 0.2 (2017-08-15)

• New multiplot interface for convenient plotting of phase diagrams + data. dataplot function underlies
key data plotting features and can be used with eqplot. See their API docs for examples. Will break existing
code using multiplot.

• MPI support for local/HPC runs. Only single node runs are explicitly supported currently. Use
--scheduler='MPIPool' command line option. Requires mpi4py.

• Default debug reporting of acceptance ratios

• Option (and default) to output the log probability array matching the trace. Use --probfile option to control.

8.1. What’s New 25

http://espei.org/en/latest/writing_input.html

ESPEI Documentation, Release 0.7.7

• Optimal parameters are now chosen based on lowest error in chain.

• Bug fixes including

– py2/3 compatibility

– Unicode datasets

– handling of singular matrix errors from pycalphad’s equilibrium

– reporting of failed conditions

8.1.25 0.1.5 (2017-08-02)

• Significant error checking of JSON inputs.

• Add new --check-datasets option to check the datasets at path. It should be run before you run ESPEI
fittings. All errors must be resolved before you run.

• Move the espei script module from fit.py to run_espei.py.

• Better docs building with mocking

• Google docstrings are now NumPy docstrings

8.1.26 0.1.4 (2017-07-24)

• Documentation improvements for usage and API docs

• Fail fast on JSON errors

8.1.27 0.1.3 (2017-06-23)

• Fix bad version pinning in setup.py

• Explicitly support Python 2.7

8.1.28 0.1.2 (2017-06-23)

• Fix dask incompatibility due to new API usage

8.1.29 0.1.1 (2017-06-23)

• Fix a bug that caused logging to raise if bokeh isn’t installed

8.1.30 0.1 (2017-06-23)

ESPEI is now a package! New features include

• Fork https://github.com/richardotis/pycalphad-fitting

• Use emcee for MCMC fitting rather than pymc

• Support single-phase only fitting

• More control options for running ESPEI from the command line

26 Chapter 8. Change log

https://github.com/richardotis/pycalphad-fitting

ESPEI Documentation, Release 0.7.7

• Better support for incremental saving of the chain

• Control over output with logging over printing

• Significant code cleanup

• Better usage documentation

See what’s new!

8.1. What’s New 27

CHANGES.html

ESPEI Documentation, Release 0.7.7

28 Chapter 8. Change log

Part II

Tutorials

29

CHAPTER 9

Cu-Mg example

9.1 Cu-Mg Example

The Cu-Mg binary system is an interesting and simple binary subsystem for light metal alloys. It has been mod-
eled in the literature by Coughanowr et al.1, Zuo and Chang2 and Zhou et al.3 and was featured as a case study in
Computational Thermodynamics The Calphad Method by Lukas, Fries, & Sundman4.

Here we will combine density functional theory and experimental calculations of single-phase data to generate a
first-principles phase diagram. Then that database will be used as a starting point for a Markov Chain Monte Carlo
(MCMC) Bayesian optimization of the parameters to fit zero-phase fraction data.

9.1.1 Input data

All of the input data for ESPEI is stored in a public ESPEI-datasets repository on GitHub. The data in this repository
is Creative Commons Attribution 4.0 (CC-BY-4.0) licensed and may be used, commercialized or reused freely.

In order to run ESPEI with the data in ESPEI-datasets, you should clone this repository to your computer. Files
referred to throughout this tutorial are found in the CU-MG folder. The input files will be very breifly explained in this
tutorial so that you are able to know their use. A more detailed description of the files is found on the Making ESPEI
datasets page.

If you make changes or additions, you are encouraged to share these back to the ESPEI-datasets repository so that
others may benefit from this data as you have. You may then add your name to the CONTRIBUTORS file as described
in the README.

1 Coughanowr, C. A., Ansara, I., Luoma, R., Hamalainen, M. & Lukas, H. L. Assessment of the Cu-Mg system. Zeitschrift f{ü}r Met. 82,
574–581 (1991).

2 Zuo, Y. U. E. & Chang, Y. A. Thermodynamic calculation of the Mg-Cu phase diagram. Zeitschrift f{ü}r Met. 84, 662–667 (1993).
3 Zhou, S. et al. Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System. J. Phase Equilibria Diffus. 28,

158–166 (2007). doi:10.1007/s11669-007-9022-0
4 Lukas, H., Fries, S. G. & Sundman, B. Computational Thermodynamics The Calphad Method. (Cambridge University Press, 2007).

doi:10.1017/CBO9780511804137

31

https://github.com/phasesresearchlab/espei-datasets
https://doi.org/10.1007/s11669-007-9022-0
https://doi.org/10.1017/CBO9780511804137

ESPEI Documentation, Release 0.7.7

9.1.2 Phases and CALPHAD models

The Cu-Mg system contains five stable phases: Liquid, disordered fcc and hcp, the C15 Laves phase and the CuMg2
phase. All of these phases will be modeled as solution phases, except for CuMg2, which will be represented as a
stoichiometric compound. The phase names and corresponding sublattice models are as follows:

LIQUID: (CU, MG)1
FCC_A1: (CU, MG)1 (VA)1
HCP_A3: (CU, MG)1 (VA)1
LAVES_C15: (CU, MG)2 (CU, MG)1
CUMG2: (CU)1 (MG)2

These phase names and sublattice models are described in the JSON file Cu-Mg-input.json file as seen below

{
"components": ["CU", "MG", "VA"],
"phases": {

"LIQUID" : {
"sublattice_model": [["CU", "MG"]],
"sublattice_site_ratios": [1]

},
"CUMG2": {

"sublattice_model": [["CU"], ["MG"]],
"sublattice_site_ratios": [1, 2]

},
"FCC_A1": {

"sublattice_model": [["CU", "MG"], ["VA"]],
"sublattice_site_ratios": [1, 1]

},
"HCP_A3": {

"sublattice_site_ratios": [1, 0.5],
"sublattice_model": [["CU", "MG"], ["VA"]]

},
"LAVES_C15": {

"sublattice_site_ratios": [2, 1],
"sublattice_model": [["CU", "MG"], ["CU", "MG"]]

}
}

}

9.1.3 ESPEI

ESPEI has two types of fitting – parameter generation and MCMC optimization. The parameter generation step uses
experimental and first-principles data of the derivatives of the Gibbs free energy to parameterize the Gibbs energies of
each individual phase. The MCMC optimization step fits the generated parameters to experimental phase equilibria
data. These two fitting procedures can be used together to fully assess a given system. For clarity, we will preform
these steps separately to fit Cu-Mg. The next two sections are devoted to describing ESPEI’s parameter generation and
optimization.

Though it should be no problem for this case, since the data has already been used, you should get in the habit of
checking datasets before running ESPEI. ESPEI has a tool to help find and report problems in your datasets. This
is automatically run when you load the datasets, but will fail on the first error. Running the following commmand
(assuming from here on that you are in the CU-MG folder from ESPEI-datasets):

espei --check-datasets input-data

32 Chapter 9. Cu-Mg example

https://github.com/phasesresearchlab/espei-datasets

ESPEI Documentation, Release 0.7.7

The benefit of the this approach is that all of the datasets will be checked and reported at once. If there are any failures,
a list of them will be reported with the two main types of errors being JSONError, for which you should read
the JSON section of Making ESPEI datasets, or DatasetError, which are related to the validity of your datasets
scientifically (maching conditions and values shape, etc.). The DatasetError messages are designed to be clear,
so please open an issue on GitHub if there is any confusion.

9.1.4 First-principles phase diagram

By using the Cu-Mg-input.json phase description for the fit settings and passing all of the input data in the
input-data folder, we can first use ESPEI to generate a phase diagram based on single-phase experimental and
DFT data. Currently all of the input datasets must be formation properties, and it can be seen that the formation
enthalpies are defined from DFT and experiments for the Laves and CuMg2 phases. Mixing enthalpies are defined for
the for the fcc, hcp, and Laves phases from DFT and for liquid from experimental measurements.

The following command will generate a database named cu-mg_dft.tdb with parameters selected and fit by ES-
PEI:

espei --input espei-in.yaml

where espei-in.yaml is a ESPEI input file with the following contents

system:
phase_models: Cu-Mg-input.json
datasets: input-data

generate_parameters:
excess_model: linear
ref_state: SGTE91

output:
output_db: cu-mg_dft.tdb

The calculation should be relatively quick, on the order of a minute of runtime. With the above command, only
mininmal output (warnings) will be reported. You can increase the verbosity to report info messages by setting the
output.verbosity key to 1 or debug messages with 2.

With the following code, we can look at the generated phase diagram and compare it to our data.

First-principles phase diagram
from pycalphad import Database, variables as v
from espei.datasets import load_datasets, recursive_glob
from espei.plot import multiplot
import matplotlib.pyplot as plt

load the experimental and DFT datasets
datasets = load_datasets(recursive_glob('input-data', '*.json'))

set up the pycalphad phase diagram calculation
dbf = Database('cu-mg_dft.tdb')
comps = ['CU', 'MG', 'VA']
phases = ['LIQUID', 'FCC_A1', 'HCP_A3', 'CUMG2', 'LAVES_C15']
conds = {v.P: 101325, v.T: (300, 1500, 10), v.X('MG'): (0, 1, 0.01)}

plot the phase diagram and data
multiplot(dbf, comps, phases, conds, datasets)
plt.savefig('cu-mg_dft_phase_diagram.png')

Which should result in the following figure

9.1. Cu-Mg Example 33

https://github.com/PhasesResearchLab/ESPEI/issues

ESPEI Documentation, Release 0.7.7

Fig. 1: First-principles Cu-Mg phase diagram from the single-phase fitting in ESPEI

34 Chapter 9. Cu-Mg example

ESPEI Documentation, Release 0.7.7

We can see that the phase diagram is already very reasonable compared to the experimental points. The liquidus
temperatures and the solubilities of the fcc and Laves phases are the key differences between the equilibrium data and
our first-principles phase diagram. The next section will discuss using ESPEI to optimize the parameters selected and
calculated based on all the data.

9.1.5 MCMC optimization

With the data in the CU-MG input data, ESPEI generated 18 parameters to fit. For systems with more components,
solution phases, and input data, may more parameters could be required to describe the thermodynamics of the specific
system well. Because they describe Gibbs free energies, parameters in CALPHAD models are highly correlated in
both single-phase descriptions and for describing equilibria between phases. For large systems, global numerical
optimization of many parameters simultaneously is computationally intractable.

To combat the problem of optimizing many paramters, ESPEI uses MCMC, a stochastic optimzation method.

Now we will use our zero phase fraction equilibria data to optimize our first-principles database with MCMC. The
following command will take the database we created in the single-phase parameter selection and perform a MCMC
optimization, creating a cu-mg_mcmc.tdb:

espei --input espei-in.yaml

where espei-in.yaml is an ESPEI input file with the following structure

system:
phase_models: Cu-Mg-input.json
datasets: input-data

mcmc:
iterations: 1000
input_db: cu-mg_dft.tdb

output:
output_db: cu-mg_mcmc.tdb

ESPEI defaults to run 1000 iterations and depends on calculating equilibrium in pycalphad several times for each
iteration and the optimization is compute-bound. Fortunately, MCMC optimzations are embarrasingly parallel and
ESPEI allows for parallelization using dask or with MPI using mpi4py (single-node only at the time of writing - we
are working on it).

Note that you may also see messages about convergence failures or about droppping conditions. These refer to failures
to calculate the log-probability or in the pycalphad solver’s equilibrium calculation. They are not detrimental to
the optimization accuracy, but overall optimization may be slower because those parameter proposals will never be
accepted (they return a log-probability of −∞).

Finally, we can use the newly optimized database to plot the phase diagram

Optimized phase diagram from ESPEI's MCMC fitting
from pycalphad import Database, variables as v
from espei.datasets import load_datasets, recursive_glob
from espei.plot import multiplot
import matplotlib.pyplot as plt

load the experimental and DFT datasets
datasets = load_datasets(recursive_glob('input-data', '*.json'))

set up the pycalphad phase diagram calculation
dbf = Database('cu-mg_mcmc.tdb')
comps = ['CU', 'MG', 'VA']
phases = ['LIQUID', 'FCC_A1', 'HCP_A3', 'CUMG2', 'LAVES_C15']

(continues on next page)

9.1. Cu-Mg Example 35

http://dask.pydata.org/
http://mpi4py.scipy.org/

ESPEI Documentation, Release 0.7.7

(continued from previous page)

conds = {v.P: 101325, v.T: (300, 1500, 10), v.X('MG'): (0, 1, 0.01)}

plot the phase diagram and data
multiplot(dbf, comps, phases, conds, datasets)
plt.savefig('cu-mg_mcmc_phase_diagram.png')

Fig. 2: Optimized Cu-Mg phase diagram from the MCMC fitting in ESPEI

9.1.6 Analyzing ESPEI Results

After finishing a MCMC run, you will want to analyze your results.

All of the MCMC results will be maintained in two output files, which are serialized NumPy arrays. The file names
are set in your espei-in.yaml file. The filenames are set by output.tracefile and output.probfile
(documentation) and the defaults are trace.npy and lnprob.npy, respectively.

The tracefile contains all of the parameters that were proposed over all chains and iterations (the trace). The
probfile contains all of calculated log probabilities for all chains and iterations (as negative numbers, by conven-
tion).

There are several aspects of your data that you may wish to analyze. The next sections will explore some of the
options.

36 Chapter 9. Cu-Mg example

http://espei.org/en/latest/writing_input.html#tracefile

ESPEI Documentation, Release 0.7.7

Probability convergence

First we’ll plot how the probability changes for all of the chains as a function of iterations. This gives a qualitative
view of convergence. There are several quantitative metrics that we won’t explore here, such as autocorrelation.
Qualitatively, this run does not appear converged after 115 iterations.

remove next line if not using iPython or Juypter Notebooks
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from espei.analysis import truncate_arrays

trace = np.load('trace.npy')
lnprob = np.load('lnprob.npy')

trace, lnprob = truncate_arrays(trace, lnprob)

ax = plt.gca()
ax.set_yscale('log')
ax.set_ylim(1e7, 1e10)
ax.set_xlabel('Iterations')
ax.set_ylabel('- lnprob')
num_chains = lnprob.shape[0]
for i in range(num_chains):

ax.plot(-lnprob[i,:])
plt.show()

Visualizing the trace of each parameter

We would like to see how each parameter changed during the iterations. For brevity in the number of plots we’ll plot
all the chains for each parameter on the same plot. Here we are looking to see how the parameters explore the space

9.1. Cu-Mg Example 37

ESPEI Documentation, Release 0.7.7

and converge to a solution.

remove next line if not using iPython or Juypter Notebooks
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from espei.analysis import truncate_arrays

trace = np.load('trace.npy')
lnprob = np.load('lnprob.npy')

trace, lnprob = truncate_arrays(trace, lnprob)

num_chains = trace.shape[0]
num_parameters = 3 # only plot the first three parameter, for all of them use `trace.
→˓shape[2]`
for parameter in range(num_parameters):

ax = plt.figure().gca()
ax.set_xlabel('Iterations')
ax.set_ylabel('Parameter value')
for chain in range(num_chains):

ax.plot(trace[chain, :, parameter])
plt.show()

38 Chapter 9. Cu-Mg example

ESPEI Documentation, Release 0.7.7

Corner plots

Note: You must install the corner package before using it (conda install corner or pip install
corner).

In a corner plot, the distributions for each parameter are plotted along the diagonal and covariances between them under
the diagonal. A more circular covariance means that parameters are not correlated to each other, while elongated shapes

9.1. Cu-Mg Example 39

ESPEI Documentation, Release 0.7.7

indicate that the two parameters are correlated. Strongly correlated parameters are expected for some parameters in
CALPHAD models within phases or for phases in equilibrium, because increasing one parameter while decreasing
another would give a similar error.

remove next line if not using iPython or Juypter Notebooks
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import corner

from espei.analysis import truncate_arrays

trace = np.load('trace.npy')
lnprob = np.load('lnprob.npy')

trace, lnprob = truncate_arrays(trace, lnprob)

flatten the along the first dimension containing all the chains in parallel
fig = corner.corner(trace.reshape(-1, trace.shape[-1]))
plt.show()

40 Chapter 9. Cu-Mg example

ESPEI Documentation, Release 0.7.7

Ultimately, there are many features to explore and we have only covered a few basics. Since all of the results are stored
as arrays, you are free to analyze using whatever methods are relevant.

9.1.7 Summary

ESPEI allows thermodynamic databases to be easily reoptimized with little user interaction, so more data can be added
later and the database reoptimized at the cost of only computer time. In fact, the existing database from estimates can
be used as a starting point, rather than one directly from first-principles, and the database can simply be modified to
match any new data.

9.1. Cu-Mg Example 41

ESPEI Documentation, Release 0.7.7

9.1.8 References

9.1.9 Acknowledgements

Credit for initially preparing the datasets goes to Aleksei Egorov.

42 Chapter 9. Cu-Mg example

Part III

How-to

43

CHAPTER 10

YAML input files

10.1 ESPEI YAML input files

This page aims to completely describe the ESPEI input file in the YAML format. Possibly useful links are the YAML
refcard and the (possibly less useful) Full YAML specification. These are all key value pairs in the format

key: value

They are nested for purely organizational purposes.

top_level_key:
key: value

As long as keys are nested under the correct heading, they have no required order. All of the possible keys are

system:
phase_models
datasets
tags

output:
verbosity
logfile
output_db
tracefile
probfile

generate_parameters:
excess_model
ref_state
ridge_alpha
aicc_penalty_factor
input_db

(continues on next page)

45

http://www.yaml.org/refcard.html
http://www.yaml.org/refcard.html
http://www.yaml.org/spec/

ESPEI Documentation, Release 0.7.7

(continued from previous page)

mcmc:
iterations
prior
save_interval
cores
scheduler
input_db
restart_trace
chains_per_parameter
chain_std_deviation
deterministic
approximate_equilibrium
data_weights
symbols

The next sections describe each of the keys individually. If a setting has a default of required it must be set
explicitly.

10.1.1 system

The system key is intended to describe the specific system you are fitting, including the components, phases, and the
data to fit to.

phase_models

type string

default required

The JSON file describing the CALPHAD models for each phase. See Phase Descriptions for an example of how to
write this file.

datasets

type string

default required

The path to a directory containing JSON files of input datasets. The file extension to each of the datasets must be
named as .json, but they can otherwise be named freely.

For an examples of writing these input JSON files, see Making ESPEI datasets.

tags

type dict

default required

Mapping of keys to values to add to datasets with matching tags. These can be used to dynamically drive values in
datasets without adjusting the datasets themselves. Useful for adjusting weights or other values in datasets in bulk.
For an examples of using tags in input JSON files, see Tags.

46 Chapter 10. YAML input files

ESPEI Documentation, Release 0.7.7

10.1.2 output

verbosity

type int

default 0

Controls the logging level. Most users will probably want to use Info or Trace.

Warning logs should almost never occur and this log level will be relatively quiet. Debug is a fire hose of informa-
tion, but may be useful in fixing calculation errors or adjusting weights.

Value Log Level
0 Warning
1 Info
2 Trace
3 Debug

logfile

type string

default null

Name of the file that the logs (controlled by verbosity) will be output to. The default is None (in Python, null
in YAML), meaning the logging will be output to stdout and stderr.

output_db

type string

default out.tdb

The database to write out. Can be any file format that can be written by a pycalphad Database.

tracefile

type string

default trace.npy

Name of the file that the MCMC trace is written to. The array has shape (number of chains, iterations,
number of parameters).

The array is preallocated and padded with zeros, so if you selected to take 2000 MCMC iterations, but only got through
1500, the last 500 values would be all 0.

You must choose a unique file name. An error will be raised if file specified by tracefile already exists. If you
don’t want a file to be output (e.g. for debugging), you can enter null.

probfile

type string

default lnprob.npy

10.1. ESPEI YAML input files 47

https://pycalphad.org/docs/latest/api/pycalphad.io.html?highlight=database#pycalphad.io.database.Database

ESPEI Documentation, Release 0.7.7

Name of the file that the MCMC ln probabilities are written to. The array has shape (number of chains,
iterations).

The array is preallocated and padded with zeros, so if you selected to take 2000 MCMC iterations, but only got through
1500, the last 500 values would be all 0.

You must choose a unique file name. An error will be raised if file specified by probfile already exists. If you
don’t want a file to be output (e.g. for debugging), you can enter null.

10.1.3 generate_parameters

The options in generate_parameters are used to control parameter selection and fitting to single phase data.
This should be used if you have input thermochemical data, such as heat capacities and mixing energies.

Generate parameters will use the Akaike information criterion to select model parameters and fit them, creating a
database.

excess_model

type string

default required

options linear

Which type of model to use for excess mixing parameters. Currently only linear is supported.

The exponential model is planned, as well as support for custom models.

ref_state

type string

default required

options SGTE91 | SR2016

The reference state to use for the pure elements and lattice stabilities. Currently only SGTE91 and SR2016 (for certain
elements) is supported.

There are plans to extend to support custom reference states.

ridge_alpha

type float

default 1.0e-100

Controls the ridge regression hyperparameter, $ alpha $, as given in the following equation for the ridge regression
problem

ridge_alpha should be a positive floating point number which scales the relative contribution of parameter mag-
nitudes to the residuals.

48 Chapter 10. YAML input files

https://en.wikipedia.org/wiki/Akaike_information_criterion

ESPEI Documentation, Release 0.7.7

If an exponential form is used, the floating point value must have a decimal place before the e, that is 1e-4 is invalid
while 1.e-4 is valid. More generally, the floating point must match the following regular expression per the YAML
1.1 spec: [-+]?([0-9][0-9_]*)?\.[0-9.]*([eE][-+][0-9]+)?.

aicc_penalty_factor

type dict

default null

This parameter is a mapping from a phase name and property to a penalty factor to apply to the AICc number of
parameters. The default is null, which means that all the penalty factors are one (1) for all phases, which means no
bias for more or fewer parameters compared to the textbook definition of AICc. If phases or data are not included, the
penalty factors remain one.

Increasing the penalty factor will increase the penalty for more parameters, so it will bias parameter selection to choose
fewer parameters. This can be especially useful when there is not many data points and an exact fit is possible (e.g.
4 points and 4 parameters), but modeling intutition would suggest that fewer parameters are required. A negative
penalty factor will bias ESPEI’s parameter selection to choose more parameters, which can be useful for generating
more degrees of freedom for MCMC.

aicc_penalty_factor:
BCC_A2:
HM: 5.0
SM: 5.0

LIQUID:
HM: 2.0
SM: 2.0

input_db

type string

default null

A file path that can be read as a pycalphad Database, which can provide existing parameters to add as a starting point
for parameter generation, for example magnetic parameters.

If you have single phase data, ESPEI will try to fit parameters to that data regardless of whether or not parameters
were passed in for that phase. You must be careful to only add initial parameters that do not have data that ESPEI will
try to fit. For example, do not include liquid enthalpy of mixing data for ESPEI to fit if you are providing an initial set
of parameters.

10.1.4 mcmc

The options in mcmc control how Markov Chain Monte Carlo is performed using the emcee package.

In order to run an MCMC fitting, you need to specify one and only one source of parameters somewhere in the
input file. The parameters can come from including a generate_parameters step, or by specifying the mcmc.
input_db key with a file to load as pycalphad Database.

If you choose to use the parameters from a database, you can then further control settings based on whether it is the
first MCMC run for a system (you are starting fresh) or whether you are continuing from a previous run (a ‘restart’).

10.1. ESPEI YAML input files 49

http://yaml.org/type/float.html
http://yaml.org/type/float.html
https://pycalphad.org/docs/latest/api/pycalphad.io.html?highlight=database#pycalphad.io.database.Database

ESPEI Documentation, Release 0.7.7

iterations

type int

default required

Number of iterations to perform in emcee. Each iteration consists of accepting one step for each chain in the ensemble.

prior

type list or dict

default {‘name’: ‘zero’}

Either a single prior dictionary or a list of prior dictionaries corresponding to the number of parameters. See Specifying
Priors for examples and details on writing priors.

save_interval

type int

default 1

Controls the interval (in number of iterations) for saving the MCMC chain and probability files. By default, new
files will be written out every iteration. For large files (many mcmc iterations and chains per parameter), these might
become expensive to write out to disk.

cores

type int

min 1

How many cores from available cores to use during parallelization with dask or emcee. If the chosen number of cores
is larger than available, then this value is ignored and espei defaults to using the number available.

Cores does not take affect for MPIPool scheduler option. MPIPool requires the number of processors be set directly
with MPI.

scheduler

type string

default dask

options dask | null | JSON file

Which scheduler to use for parallelization. You can choose from either dask, null, or pass the path to a JSON
scheduler file created by dask-distributed.

Choosing dask allows for the choice of cores used through the cores key.

Choosing null will result in no parallel scheduler being used. This is useful for debugging.

Passing the path to a JSON scheduler file will use the resources set up by the scheduler. JSON file schedulers are most
useful because schedulers can be started on MPI clusters using dask-mpi command. See Advanced Schedulers for
more information.

50 Chapter 10. YAML input files

ESPEI Documentation, Release 0.7.7

input_db

type string

default null

A file path that can be read as a pycalphad Database. The parameters to fit will be taken from this database.

For a parameter to be fit, it must be a symbol where the name starts with VV, e.g. VV0001. For a TDB formatted
database, this means that the free parameters must be functions of a single value that are used in your parameters. For
example, the following is a valid symbol to fit:

FUNCTION VV0000 298.15 10000; 6000 N !

restart_trace

type string

default null

If you have run a previous MCMC calculation, then you will have a trace file that describes the position and history of
all of the chains from the run. You can use these chains to start the emcee run and pick up from where you left off in
the MCMC run by passing the trace file (e.g. chain.npy) to this key.

If you are restarting from a previous calculation, you must also specify the same database file (with input_db) as
you used to run that calculation.

chains_per_parameter

type int

default 2

This controls the number of chains to run in the MCMC calculation as an integer multiple of the number of parameters.

This parameter can only be used when initializing the first MCMC run. If you are restarting a calculation, the number
of chains per parameter is fixed by the number you chose previously.

Ensemble samplers require at least 2*p chains for p fitting parameters to be able to make proposals. If
chains_per_parameter = 2, then the number of chains if there are 10 parameters to fit is 20.

The value of chains_per_parameter must be an EVEN integer.

chain_std_deviation

type float

default 0.1

The standard deviation to use when initializing chains in a Gaussian distribution from a set of parameters as a fraction
of the parameter.

A value of 0.1 means that for parameters with values (-1.5, 2000, 50000) the chains will be initialized using
those values as the mean and (0.15, 200, 5000) as standard deviations for each parameter, respectively.

This parameter can only be used when initializing the first MCMC run. If you are restarting a calculation, the standard
deviation for your chains are fixed by the value you chose previously.

10.1. ESPEI YAML input files 51

https://pycalphad.org/docs/latest/api/pycalphad.io.html?highlight=database#pycalphad.io.database.Database

ESPEI Documentation, Release 0.7.7

You may technically set this to any positive value, you would like. Be warned that too small of a standard deviation
may cause convergence to a local minimum in parameter space and slow convergence, while a standard deviation that
is too large may cause convergence to meaningless thermodynamic descriptions.

approximate_equilibrium

type bool

default False

If True, an approximate version of pycalphad’s equilibrium() function will be used to calculate the driving force
for phase boundary data. It uses pycalphad’s starting_point to construct a approximate equilibrium hyperplanes
of the lowest energy solution from a numerical sampling of each active phases’s internal degrees of freedom. This
can give speedups of up to 10x for calculating the ZPF likelihood, but may miss low energy solutions that are not
sampled well numerically, especially for phases with many sublattices, which have low energy solutions far from the
endmembers.

deterministic

type bool

default True

Toggles whether ESPEI runs are deterministic. If this is True, running ESPEI with the same Database and initial set-
tings (either the same chains_per_parameter and chain_std_deviation or the same restart_trace)
will result in exactly the same results.

Starting two runs with the same TDB or with parameter generation (which is deterministic) will result in the chains
being at exactly the same position after 100 iterations. If these are both restarted after 100 iterations for another 50
iterations, then the final chain after 150 iterations will be the same.

It is important to note that this is only explictly True when starting at the same point. If Run 1 and Run 2 are started
with the same initial parameters and Run 1 proceeds 50 iterations while Run 2 proceeds 100 iterations, restarting Run
1 for 100 iterations and Run 2 for 50 iterations (so they are both at 150 total iterations) will NOT give the same result.

data_weights

type dict

default {‘ZPF’: 1.0, ‘ACR’: 1.0, ‘HM’: 1.0, ‘SM’: 1.0, ‘CPM’: 1.0}

Each type of data can be weighted: zero phase fraction (ZPF), activity (ACR) and the different types of thermochemical
error. These weights are used to modify the initial standard deviation of each data type by

symbols

type list[str]

default null

By default, any symbol in the database following the naming pattern VV#### where #### is any number is optimized
by ESPEI. If this option is set, this can be used to manually fit a subset of the degrees of freedom in the system, or fit
degrees of freedom that do not folow the naming convention of ‘VV####’:

52 Chapter 10. YAML input files

ESPEI Documentation, Release 0.7.7

symbols: ['VV0000', 'FF0000', ...]

10.1. ESPEI YAML input files 53

ESPEI Documentation, Release 0.7.7

54 Chapter 10. YAML input files

CHAPTER 11

Specifying Priors

11.1 Specifying Priors

In Bayesian statistics, data are used to update prior distributions for all parameters to calculate posterior distributions.
A basic introduction to priors and Bayesian statistics can be found in “Kruschke, J. (2014). Doing Bayesian data
analysis: A tutorial with R, JAGS, and Stan. Academic Press.”. A more advanced treatment is given in “Gelman, A.,
Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and
Hall/CRC.”.

ESPEI provides a flexible interface to specify priors your want to use for a variety of parameters of different sign and
magnitude through the espei.priors.PriorSpec class. This section will cover how to

1. Define flexible, built-in priors using the YAML input and ESPEI script

2. Use custom priors programatically

11.1.1 Built-in Priors

ESPEI has several built-in priors that correspond to functions in scipy.stats: uniform, normal, and
triangular. There is also a special (improper) zero prior that always gives $$ ln p = 0 $$, which is the de-
fault.

Each scipy.stats prior is typically specified using several keyword argument parameters, e.g. loc and scale,
which have special meaning for the different distribution functions. In order to be flexible to specifying these argu-
ments when the CALPHAD parameters they will be used for are not known beforehand, ESPEI uses a small language
to specify how the distribution hyperparameters can be set relative to the CALPHAD parameters.

Basically, the PriorSpec objects are created with the name of the distribution and the hyperparameters that are mod-
ified with one of the modifier types: absolute, relative, shift_absolute, or shift_relative. For ex-
ample, the loc parameter might become loc_relative and scale might become scale_shift_relative.

Here are some examples of how the modifier parameters of value v modify the hyperparameters when given a CAL-
PHAD parameter of value p:

• _absolute=v always take the exact value passed in, v; loc_absolute=-20 gives a value of loc=-20.

55

ESPEI Documentation, Release 0.7.7

• _relative=v gives , v*p; scale_absolute=0.1 with p=10000 gives a value of scale=10000*0.
1=1000.

• _shift_absolute=v gives , p + v; scale_shift_absolute=-10 with p=10000 gives a value of
scale=10000+(-10)=9990.

• _shift_relative=v gives , p + v*abs(p); loc_shift_relative=-0.5 with p=-1000 gives a
value of loc=-1000+abs(-1000)*0.5=-1500.

Note that the hyperparameter prefixes (loc or scale) are arbitrary and any hyperparameters used in the statistical
distributions (e.g. c for the triangular distribution) could be used.

YAML

Prior can be specified in the YAML input as a list of dictionaries for different parameters. Since Python objects cannot
be instantiated in the YAML files, the PriorSpec can be described a dictionary of {'name': <<NAME>>,
'loc_relative': <<VALUE>>, 'scale_relative': <<VALUE>>, ...}.

Some common examples in YAML format are as follows:

normal prior, centered on parameter, standard deviation of 0.25*parameter
prior:

name: normal
loc_relative: 1.0
scale_relative: 0.25

uniform prior from 0 to 2*parameter (or negative(2*parameter) to 0)
prior:

name: uniform
loc_shift_relative: -1.0
scale_relative: 2.0

triangular prior, centered on parameter, from -0.5*parameter to 0.5*parameter
prior:

name: triangular
loc_shift_relative: -0.5
scale_relative: 1.0

Graphically, these are shown below:

Fig. 1: Example priors compared to initialized parameters.

As a side note: the priors in YAML files can be passed as Python dictionaries, e.g.:

56 Chapter 11. Specifying Priors

ESPEI Documentation, Release 0.7.7

normal prior, centered on parameter, standard deviation of 0.25*parameter
prior: {'name': 'normal', 'loc_relative': 1.0, 'scale_relative': 0.5}

Additionally, different priors can be specified using a list of prior specs that match the total degrees of freedom
(VV-parameters) in the system. For example, a two parameter system could use a normal and a triangular prior
simultaneously:

two priors:
first a normal prior, centered on parameter, standard deviation of 0.25*parameter
second a triangular prior, centered on parameter, from -0.5*parameter to 0.
→˓5*parameter
prior: [{'name': 'normal', 'loc_relative': 1.0, 'scale_relative': 0.5}, {'name':
→˓'triangular', 'loc_shift_relative': -0.5, 'scale_relative': 1.0}]

11.1.2 Custom Priors

Generally speaking, a custom prior in ESPEI is any Python object that has a logpdf method that takes a parameter
and returns the natural log of the probability density function for that parameter. Any distribution you can create using
the functions in scipy.stats, such as norm, is valid.

A list of these custom priors can be passed to ESPEI similar to using built-in priors, but only from the Python inter-
face (not YAML). The number of priors must match the number of parameters, but you can also mix these with the
PriorSpec objects as desired.

An example of fitting two parameters using a custom gamma distributions with minima at 10 and 100, respectively.

from scipy.stats import gamma

my_priors = [gamma(a=1, loc=10), gamma(a=1, loc=100)]

from espei.espei_script import get_run_settings, run_espei

input_dict = {
'system': {

'phase_models': 'phases.json',
'datasets': 'input-data',

},
'mcmc': {

'iterations': '1000',
'input_db': 'param_gen.tdb', # must have two parameters to fit
'prior': my_priors,

},
}

run_espei(get_run_settings(input_dict))

11.1. Specifying Priors 57

ESPEI Documentation, Release 0.7.7

58 Chapter 11. Specifying Priors

CHAPTER 12

Making ESPEI datasets

12.1 Making ESPEI datasets

12.1.1 JSON Format

ESPEI has a single input style in JSON format that is used for all data entry. For those unfamiliar with JSON, it is
fairly similar to Python dictionaries with some rigid requirements

• All string quotes must be double quotes. Use "key" instead of 'key'.

• Numbers should not have leading zeros. 00.123 should be 0.123 and 012.34 must be 12.34.

• Lists and nested key-value pairs cannot have trailing commas. {"nums": [1,2,3,],} is invalid and
should be {"nums": [1,2,3]}.

These errors can be challenging to track down, particularly if you are only reading the JSON error messages in Python.
A visual editor is encouraged for debugging JSON files such as JSONLint. A quick reference to the format can be
found at Learn JSON in Y minutes.

ESPEI has support for checking all of your input datasets for errors, which you should always use before you attempt to
run ESPEI. This error checking will report all of the errors at once and all errors should be fixed. Errors in the datasets
will prevent fitting. To check the datasets at path my-input-data/ you can run espei --check-datasets
my-input-data.

12.1.2 Phase Descriptions

The JSON file for describing CALPHAD phases is conceptually similar to a setup file in Thermo-Calc’s PARROT
module. At the top of the file there is the refdata key that describes which reference state you would like to choose.
Currently the reference states are strings referring to dictionaries in pycalphad.refdata only "SGTE91" is
implemented.

Each phase is described with the phase name as they key in the dictionary of phases. The details of that phase
is a dictionary of values for that key. There are 4 possible entries to describe a phase: sublattice_model,
sublattice_site_ratios, equivalent_sublattices, and aliases. sublattice_model is a list

59

https://jsonlint.com
https://learnxinyminutes.com/docs/json/

ESPEI Documentation, Release 0.7.7

of lists, where each internal list contains all of the components in that sublattice. The BCC_B2 sublattice model
is [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]], thus there are three sublattices where the
first two have Al, Ni, and vacancies. sublattice_site_ratios should be of the same length as the sublattice
model (e.g. 3 for BCC_B2). The sublattice site ratios can be fractional or integers and do not have to sum to unity.

The optional equivalent_sublattices key is a list of lists that describe which sublattices are symmetrically
equivalent. Each sub-list in equivalent_sublattices describes the indices (zero-indexed) of sublattices that
are equivalent. For BCC_B2 the equivalent sublattices are [[0, 1]], meaning that the sublattice at index 0 and
index 1 are equivalent. There can be multiple different sets (multiple sub-lists) of equivalent sublattices and there can
be many equivalent sublattices within a sublattice (see FCC_L12). If no equivalent_sublattice key exists, it
is assumed that there are none.a

Finally, the aliases key is used to refer to other phases that this sublattice model can describe when symmetry
is accounted for. Aliases are used here to describe the BCC_A2 and FCC_A1, which are the disordered phases of
BCC_B2 and FCC_L12, respectively. Notice that the aliased phases are not otherwise described in the input file.
Multiple phases can exist with aliases to the same phase, e.g. FCC_L12 and FCC_L10 can both have FCC_A1 as an
alias.

{
"refdata": "SGTE91",
"components": ["AL", "NI", "VA"],
"phases": {

"LIQUID" : {
"sublattice_model": [["AL", "NI"]],
"sublattice_site_ratios": [1]
},
"BCC_B2": {
"aliases": ["BCC_A2"],
"sublattice_model": [["AL", "NI", "VA"], ["AL", "NI", "VA"], ["VA"]],
"sublattice_site_ratios": [0.5, 0.5, 1],
"equivalent_sublattices": [[0, 1]]
},
"FCC_L12": {

"aliases": ["FCC_A1"],
"sublattice_model": [["AL", "NI"], ["AL", "NI"], ["AL", "NI"], ["AL", "NI"], [

→˓"VA"]],
"sublattice_site_ratios": [0.25, 0.25, 0.25, 0.25, 1],
"equivalent_sublattices": [[0, 1, 2, 3]]
},
"AL3NI1": {
"sublattice_site_ratios": [0.75, 0.25],
"sublattice_model": [["AL"], ["NI"]]
},
"AL3NI2": {
"sublattice_site_ratios": [3, 2, 1],
"sublattice_model": [["AL"], ["AL", "NI"], ["NI", "VA"]]
},
"AL3NI5": {
"sublattice_site_ratios": [0.375, 0.625],
"sublattice_model": [["AL"], ["NI"]]
}

}
}

12.1.3 Units

• Energies are in J/mol-atom (and the derivatives follow)

60 Chapter 12. Making ESPEI datasets

ESPEI Documentation, Release 0.7.7

• All compositions are mole fractions

• Temperatures are in Kelvin

• Pressures in Pascal

12.1.4 Non-equilibrium Thermochemical Data

Non-equilibrium thermochemical data is used where the internal degrees of freedom for a phase are known. This
type of data is the only data that can be used for parameter generation, but it can also be used in Bayesian parameter
estimation.

Two examples follow. The first dataset has some data for the formation heat capacity for BCC_B2.

• The components and phases keys simply describe those found in this entry.

• Use the reference key for bookkeeping the source of the data.

• The comment key and value can be used anywhere in the data to keep notes for your reference. It takes no
effect.

• The solver the internal degrees of freedom and and site ratios are described for the phase.

sublattice_configurations is a list of different configurations, that should correspond to
the sublattices for the phase descriptions. Non-mixing sublattices are represented as a string, while
mixing sublattices are represented as a lists. Thus an endmember for BCC_B2 (as in this example)
is ["AL", "NI", VA"] and if there were mixing (as in the next example) it might be ["AL",
["AL", "NI"], "VA"]. Mixing also means that the sublattice_occupancies key must
be specified, but that is not the case in this example. It is important to note that any mixing config-
urations must have any ideal mixing contributions removed. Regardless of whether there is mixing
or not, the length of this list should always equal the number of sublattices in the phase, though
the sub-lists can have mixing up to the number of components in that sublattice. Note that the
sublattice_configurations is a list of these lists. That is, there can be multiple sublattice
configurations in a single dataset. See the second example in this section for such an example.

• The conditions describe temperatures (T) and pressures (P) as either scalars or one-dimensional lists.

• The type of quantity is expressed using the output key. This can in principle be any thermodynamic quantity,
but currently only CPM*, SM*, and HM* (where * is either nothing, _MIX or _FORM) are supported. Support
for changing reference states is planned but not yet implemented, so all thermodynamic quantities must be
formation quantities (e.g. HM_FORM or HM_MIX, etc.). This issue is tracked by ESPEI #85 on GitHub

• values is a 3-dimensional array where each value is the output for a specific condition of pressure, tempera-
ture, and sublattice configurations from outside to inside. Alternatively, the size of the array must be (len(P),
len(T), len(subl_config)). In the example below, the shape of the values array is (1, 12, 1) as there
is one pressure scalar, one sublattice configuration, and 12 temperatures.

• There is also a key, excluded_model_contributions, which will make those contributions of pycal-
phad’s Model not be fit to when doing parameter selection or MCMC. This is useful for cases where the type of
data used does not include some specific Model contributions that parameters may already exist for. For exam-
ple, DFT formation energies do not include ideal mixing or (CALPHAD-type) magnetic model contributions,
but formation energies from experiments would include these contributions so experimental formation energies
should not be excluded.

{
"reference": "Yi Wang et al 2009",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

(continues on next page)

12.1. Making ESPEI datasets 61

https://github.com/PhasesResearchLab/ESPEI/issues/85

ESPEI Documentation, Release 0.7.7

(continued from previous page)

"mode": "manual",
"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [["AL", "NI", "VA"]],
"comment": "NiAl sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

},
"excluded_model_contributions": ["idmix", "mag"],
"output": "CPM_FORM",
"values": [[[0],

[-0.0173],
[-0.01205],
[0.12915],
[0.24355],
[0.13305],
[-0.1617],
[-0.51625],
[-0.841],
[-1.0975],
[-1.28045],
[-1.3997]]]

}

In the second example below, there is formation enthalpy data for multiple sublattice configurations. All of
the keys and values are conceptually similar. Here, instead of describing how the output quantity changes
with temperature or pressure, we are instead only comparing HM_FORM values for different sublattice con-
figurations. The key differences from the previous example are that there are 9 different sublattice config-
urations described by sublattice_configurations and sublattice_occupancies. Note that the
sublattice_configurations and sublattice_occupancies should have exactly the same shape. Sub-
lattices without mixing should have single strings and occupancies of one. Sublattices that do have mixing should
have a site ratio for each active component in that sublattice. If the sublattice of a phase is ["AL", "NI", "VA"],
it should only have two occupancies if only ["AL", "NI"] are active in the sublattice configuration.

The last difference to note is the shape of the values array. Here there is one pressure, one temperature, and 9
sublattice configurations to give a shape of (1, 1, 9).

{
"reference": "C. Jiang 2009 (constrained SQS)",
"components": ["AL", "NI", "VA"],
"phases": ["BCC_B2"],
"solver": {

"sublattice_occupancies": [
[1, [0.5, 0.5], 1],
[1, [0.75, 0.25], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1],
[1, [0.25, 0.75], 1],
[1, [0.75, 0.25], 1],
[1, [0.5, 0.5], 1],
[1, [0.5, 0.5], 1]
],

"sublattice_site_ratios": [0.5, 0.5, 1],
"sublattice_configurations": [

(continues on next page)

62 Chapter 12. Making ESPEI datasets

ESPEI Documentation, Release 0.7.7

(continued from previous page)

["AL", ["NI", "VA"], "VA"],
["AL", ["NI", "VA"], "VA"],
["NI", ["AL", "NI"], "VA"],
["NI", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["AL", ["AL", "NI"], "VA"],
["NI", ["AL", "VA"], "VA"],
["NI", ["AL", "VA"], "VA"],
["VA", ["AL", "NI"], "VA"]

],
"comment": "BCC_B2 sublattice configuration (2SL)"

},
"conditions": {

"P": 101325,
"T": 300

},
"output": "HM_FORM",
"values": [[[-40316.61077, -56361.58554,

-49636.39281, -32471.25149, -10890.09929,
-35190.49282, -38147.99217, -2463.55684,
-15183.13371]]]

}

12.1.5 Equilibrium Thermochemical Data

Equilibrium thermochemical data is used when the internal degrees of freedom are not known. This is typically true
for experimental thermochemical data. Some cases where this type of data is useful, compared to non-equilibrium
thermochemical data are:

1. Activity data

2. Enthalpy of formation data in region with two or more phases in equilibrium

3. Enthalpy of formation for a phase with multiple sublattice, e.g. the 𝜎 phase

This type of data can not be used in parameter selection, because a core assumption of parameter selection is that the
site fractions are known.

Note: Only activity data is supported at the moment. Support for other data types is tracked by ESPEI #104 on
GitHub.

Activity data is similar to non-equilibrium thermochemical data, except we must enter a reference state and the
solver key is no longer required, since we do not know the internal degrees of freedom. A key detail is that
the phases key must specify all phases that are possible to form.

An example for Mg activties in Cu-Mg follows, with data digitized from S.P. Garg, Y.J. Bhatt, C. V. Sundaram,
Thermodynamic study of liquid Cu-Mg alloys by vapor pressure measurements, Metall. Trans. 4 (1973) 283–289.
doi:10.1007/BF02649628.

{
"components": ["CU", "MG", "VA"],
"phases": ["LIQUID", "FCC_A1", "HCP_A3"],
"reference_state": {
"phases": ["LIQUID"],
"conditions": {

(continues on next page)

12.1. Making ESPEI datasets 63

https://github.com/PhasesResearchLab/ESPEI/issues/104
https://github.com/PhasesResearchLab/ESPEI/issues/104

ESPEI Documentation, Release 0.7.7

(continued from previous page)

"P": 101325,
"T": 1200,
"X_MG": 1.0

}
},
"conditions": {
"P": 101325,
"T": 1200,
"X_CU": [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]

},

"output": "ACR_MG",
"values": [[[0.0057,0.0264,0.0825,0.1812,0.2645,0.4374,0.5852,0.7296,0.882,1.

→˓0]]],
"reference": "garg1973thermodynamic",
"comment": "Digitized Figure 3 and converted from activity coefficients."

}

12.1.6 Phase Boundary Data

The phase boundary data JSON input files are similar to other types of input, but instead of scalar values for the
property of interest, the values key represents the phase regions active in a single phase equilbrium.

Notice that the type of data we are entering in the output key is ZPF (zero-phase fraction) rather than CP_FORM
or H_MIX. Each entry in the ZPF list is a list of all phases in equilibrium, here [["AL3NI2", ["NI"], [0.
4083]], ["BCC_B2", ["NI"], [0.4340]]] where each phase entry has the name of the phase, the com-
position element, and the composition of the tie line point. If there is no corresponding tie line point, such as on a liq-
uidus line, then one of the compositions will be null: [["LIQUID", ["NI"], [0.6992]], ["BCC_B2",
["NI"], [null]]]. Three- or n-phase equilibria are described as expected: [["LIQUID", ["NI"], [0.
752]], ["BCC_B2", ["NI"], [0.71]], ["FCC_L12", ["NI"], [0.76]]].

Note that for higher-order systems the component names and compositions are lists and should be of length c-1,
where c is the number of components.

{
"components": ["AL", "NI"],
"phases": ["AL3NI2", "BCC_B2"],
"conditions": {

"P": 101325,
"T": [1348, 1176, 977]

},
"output": "ZPF",
"values": [

[["AL3NI2", ["NI"], [0.4083]], ["BCC_B2", ["NI"], [0.4340]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4456]]],
[["AL3NI2", ["NI"], [0.4114]], ["BCC_B2", ["NI"], [0.4532]]]

],
"reference": "37ALE"

}

12.1.7 Tags

Tags are a flexible method to adjust many ESPEI datasets simultaneously and drive them via the ESPEI’s input YAML
file. Each dataset can have a "tags" key, with a corresponding value of a list of tags, e.g. ["dft"]. Any tag

64 Chapter 12. Making ESPEI datasets

ESPEI Documentation, Release 0.7.7

modifications present in the input YAML file are applied to the datasets before ESPEI is run.

They can be used in many creative ways, but some suggested ways include to add weights or to exclude model
contributions, e.g. for DFT data that should not have contributions for a CALPHAD magnetic model or ideal mixing
energy. An example of using the tags in an input file looks like:

{
"components": ["CR", "FE", "VA"],"phases": ["BCC_A2"],
"solver": {"mode": "manual", "sublattice_site_ratios": [1, 3],

"sublattice_configurations": [[["CR", "FE"], "VA"]],
"sublattice_occupancies": [[[0.5, 0.5], 1.0]]},
"conditions": {"P": 101325, "T": 300},
"output": "HM_MIX",
"values": [[[10000]]],
"tags": ["dft"]

}

An example input YAML looks like

system:
phase_models: CR-FE.json
datasets: FE-NI-datasets-sep
tags:
dft:

excluded_model_contributions: ["idmix", "mag"]

generate_parameters:
excess_model: linear
ref_state: SGTE91
ridge_alpha: 1.0e-20

output:
verbosity: 2
output_db: out.tdb

This will add the key "excluded_model_contributions" to all datasets that have the "dft" tag:

{
"components": ["CR", "FE", "VA"],"phases": ["BCC_A2"],
"solver": {"mode": "manual", "sublattice_site_ratios": [1, 3],

"sublattice_configurations": [[["CR", "FE"], "VA"]],
"sublattice_occupancies": [[[0.5, 0.5], 1.0]]},
"conditions": {"P": 101325, "T": 300},
"output": "HM_MIX",
"values": [[[10000]]],
"excluded_model_contributions": ["idmix", "mag"]

}

12.1.8 Common Mistakes and Notes

1. A single element sublattice is different in a phase model ([["A", "B"], ["A"]]]) than a sublattice con-
figuration ([["A", "B"], "A"]).

2. Make sure you use the right units (J/mole-atom, mole fractions, Kelvin, Pascal)

3. Mixing configurations should not have ideal mixing contributions.

4. All types of data can have a weight key at the top level that will weight the standard deviation parameter in
MCMC runs for that dataset. If a single dataset should have different weights applied, multiple datasets should

12.1. Making ESPEI datasets 65

ESPEI Documentation, Release 0.7.7

be created.

66 Chapter 12. Making ESPEI datasets

CHAPTER 13

Recipes

13.1 Recipes

Here you can find some useful snippets of code to make using ESPEI easier.

13.1.1 Get optimal parameter TDB files from a trace

Creating TDBs of optimal parameters from a tracefile and probfile:

"""
This script updates an input TDB file with the optimal parameters from an ESPEI run.

Change the capitalized variables to your desired input and output filenames.
"""

INPUT_TDB_FILENAME = 'CU-MG_param_gen.tdb'
OUTPUT_TDB_FILENAME = 'CU-MG_opt_params.tdb'
TRACE_FILENAME = 'trace.npy'
LNPROB_FILENAME = 'lnprob.npy'

import numpy as np
from pycalphad import Database
from espei.analysis import truncate_arrays
from espei.utils import database_symbols_to_fit, optimal_parameters

trace = np.load(TRACE_FILENAME)
lnprob = np.load(LNPROB_FILENAME)
trace, lnprob = truncate_arrays(trace, lnprob)

dbf = Database(INPUT_TDB_FILENAME)
opt_params = dict(zip(database_symbols_to_fit(dbf), optimal_parameters(trace,
→˓lnprob)))

(continues on next page)

67

ESPEI Documentation, Release 0.7.7

(continued from previous page)

dbf.symbols.update(opt_params)
dbf.to_file(OUTPUT_TDB_FILENAME)

13.1.2 Plot phase equilibria data

When compiling ESPEI datasets of phase equilibria data, it can be useful to plot the data to check that it matches
visually with what you are expecting. This script plots a binary phase diagram.

TIP: Using this in Jupyter Notebooks make it really fast to update and watch your progress.

"""
This script will create a plot in a couple seconds from a datasets directory
that you can use to check your phase equilibria data.

Change the capitalized variables to the system information and the
directory of datasets you want to plot.
"""

COMPONENTS = ['CU', 'MG', 'VA']
INDEPENDENT_COMPONENT = "MG" # component to plot on the x-axis
PHASES = ['BCC_A2', 'CUMG2', 'FCC_A1', 'LAVES_C15', 'LIQUID']

DATASETS_DIRECTORY = "~/my-datasets/CU-MG"

X_MIN, X_MAX = 0.0, 1.0
Y_MIN, Y_MAX = 400, 1400

script starts here, you shouldn't have to edit below this line
import os
from espei.plot import dataplot
from espei.datasets import recursive_glob, load_datasets
from pycalphad import variables as v
import matplotlib.pyplot as plt

plt.figure(figsize=(10,8))

ds = load_datasets(recursive_glob(os.path.expanduser(DATASETS_DIRECTORY), '*.json'))
conds = {v.P: 101325, v.T: (1,1,1), v.X(INDEPENDENT_COMPONENT): (1, 1, 1)}
dataplot(COMPONENTS, PHASES, conds, ds)
plt.xlim(X_MIN, X_MAX)
plt.ylim(Y_MIN, Y_MAX)
plt.show()

The script gives the following output:

13.1.3 Plot thermochemical properties parameters with data

Parameter selection in ESPEI fits Calphad parameters to thermochemical data. MCMC can adjust these parameters. In
both cases, it may be useful to compare the energies of specific endmembers and interactions to the model. The code
below compares the energies for an endmember or interaction (a configuration). The plot_parameters code will
automatically plot all of the energies that data exists for, but no more.

"""
This script plots a single interaction in a database compared to data.

(continues on next page)

68 Chapter 13. Recipes

ESPEI Documentation, Release 0.7.7

13.1. Recipes 69

ESPEI Documentation, Release 0.7.7

(continued from previous page)

"""

Settings
INPUT_TDB_FILENAME = 'CU-MG_param_gen.tdb'
DATASET_DIRECTORY = 'input-data'
PHASE_NAME = 'LIQUID'
CONFIGURATION must be a tuple of the configuration to be plotted.
This can only plot one endmember or interaction at a time.
Note that the outside tuples are the whole configuration
and the insides are for each individual sublattice.
Single sublattices *MUST* have the comma after the
object in order to be a tuple, not just parantheses.
some examples:
('CU', 'MG') # endmember
(('CU', 'MG'),) # (('CU', 'MG')) is invalid because it will become ('CU', 'MG')
('MG', ('CU', 'MG'))
CONFIGURATION = (('CU', 'MG'),)

Plot the parameter
import matplotlib.pyplot as plt
from pycalphad import Database
from espei.datasets import load_datasets, recursive_glob
from espei.plot import plot_parameters

dbf = Database(INPUT_TDB_FILENAME)
comps = sorted(dbf.elements)
ds = load_datasets(recursive_glob(DATASET_DIRECTORY, '*.json'))
plot_parameters(dbf, comps, PHASE_NAME, CONFIGURATION, datasets=ds, symmetry=None)
plt.show()

Running for the single sublattice LIQUID phase in Cu-Mg gives the following output after parameter selection:

70 Chapter 13. Recipes

ESPEI Documentation, Release 0.7.7

13.1.4 Visualize probability convergence

Convergence can be qualitatively estimated by looking at how the log-probability changes for all of the chains as a
function of iterations.

remove next line if not using iPython or Juypter Notebooks
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from espei.analysis import truncate_arrays

trace = np.load('trace.npy')
lnprob = np.load('lnprob.npy')

trace, lnprob = truncate_arrays(trace, lnprob)

ax = plt.gca()
ax.set_yscale('log')
ax.set_xlabel('Iterations')
ax.set_ylabel('- lnprob')
ax.plot(-lnprob.T)
plt.show()

13.1.5 Visualize the trace of each parameter

Looking at how each parameter chain evolves across the chains can show if any particular chains are diverging from
the rest, if there are multiple modes being explored, or how wide the distribution of parameters are relative to each
other.

13.1. Recipes 71

ESPEI Documentation, Release 0.7.7

remove next line if not using iPython or Juypter Notebooks
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from espei.analysis import truncate_arrays

trace = np.load('trace.npy')
lnprob = np.load('lnprob.npy')

trace, lnprob = truncate_arrays(trace, lnprob)

num_chains = trace.shape[0]
num_parameters = trace.shape[2]
for parameter in range(num_parameters):

ax = plt.figure().gca()
ax.set_xlabel('Iterations')
ax.set_ylabel('Parameter value')
ax.plot(trace[..., parameter].T)

plt.show()

The example below is for one parameter. Running the snippet above will plot all of the parameters on separate plots.

13.1.6 Plot a corner plot

Note: You must install the corner package before using it (conda install corner or pip install
corner).

In a corner plot, the distributions for each parameter are plotted along the diagonal and covariances between them under
the diagonal. A more circular covariance means that parameters are not correlated to each other, while elongated shapes
indicate that the two parameters are correlated. Strongly correlated parameters are expected for some parameters in

72 Chapter 13. Recipes

ESPEI Documentation, Release 0.7.7

CALPHAD models within phases or for phases in equilibrium, because increasing one parameter while decreasing
another would give a similar likelihood.

remove next line if not using iPython or Juypter Notebooks
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import corner

from espei.analysis import truncate_arrays

trace = np.load('trace.npy')
lnprob = np.load('lnprob.npy')

trace, lnprob = truncate_arrays(trace, lnprob)

flatten the along the first dimension containing all the chains in parallel
fig = corner.corner(trace.reshape(-1, trace.shape[-1]))
plt.show()

13.1. Recipes 73

ESPEI Documentation, Release 0.7.7

74 Chapter 13. Recipes

CHAPTER 14

Use a custom unary reference state

14.1 Use a custom unary reference state

By default, ESPEI uses the SGTE91 reference state using the functions defined by Dinsdale1.

You may be interested in using custom unary reference states for parameter generation in ESPEI if you are developing
descriptions of the Gibbs energy and/or lattice stability for pure elements. This is useful for any unary function
developed outside of ESPEI, available in the literature.

Instead of generating parameters with:

system:
phase_models: my-phases.json
datasets: my-input-datasets

generate_parameters:
excess_model: linear
ref_state: SGTE91

You can create a small Python package that provides a reference state called MyCustomReferenceState, which
can be used as follows:

system:
phase_models: my-phases.json
datasets: my-input-datasets

generate_parameters:
excess_model: linear
ref_state: MyCustomReferenceState

Here MyCustomReferenceState provides the Gibbs energy for the pure elements, i.e. the GHSERXX function
for some element XX. MyCustomReferenceState can also provide lattice stabilities if the lattice stability will
not be fit using your input data.

1 A.T. Dinsdale, Calphad 15(4) (1991) 317-425, doi:10.1016/0364-5916(91)90030-N

75

https://doi.org/10.1016/0364-5916(91)90030-N

ESPEI Documentation, Release 0.7.7

14.1.1 Quickstart: Skeleton package

If you are not comfortable developing a Python package using the details below, that’s okay! We have provided a
skeleton package that can be downloaded and installed to give you a working example.

Running the example

Following these steps will give you a working unary reference state for Al and Ag named CustomRefstate2020.
Starting from a command line, with git installed:

1. Clone the skeleton repository: git clone https://github.com/PhasesResearchLab/
ESPEI-unary-refstate-skeleton

2. Enter the downloaded repository: cd ESPEI-unary-refstate-skeleton

3. Install the package using pip: pip install -e .

This will install the packaged, named espei_refstate_customrefstate2020, and provide a reference state
named CustomRefstate2020.

We can use that by passing using ref_state: CustomRefstate2020 in the generate_parameters
heading in ESPEI’s YAML input. If you have ESPEI installed already, you can test that this works by:

1. Enter the espei-example directory: cd espei-example

2. Run the YAML input file using ESPEI (note: it’s safe to ignore a warning that no datsets were found - we aren’t
fitting any parameters to data here): espei --in gen_Ag-Al.yaml

If it was successful, you should have ran the YAML file:

system:
phase_models: Ag-Al.json
datasets: input-datasets

generate_parameters:
excess_model: linear
ref_state: CustomRefstate2020

and generated a database, out.tdb, containing our custom GHSERAG function (among others):

FUNCTION GHSERAG 298.15 118.202013*T - 7209.512; 1234.93 Y 190.266404*T -
15095.252; 3000.0 N !

and lattice stabilities for phases defined in the reference state and the system Ag-Al.json, such as GHCPAG.

Finally, since this reference state is probably not useful for developing any databases, uninstall the pack-
age by running pip uninstall espei_refstate_customrefstate2020 and removing the directory
espei_refstate_customrefstate2020.egg-info from the root directory if one exists.

Using the skeleton to create your own database

If you want to use the skeleton to create your own reference state to provide ESPEI, you can follow the steps below. To
keep the steps concrete, we’ll create a reference state for Cu called Bocklund2019 following the unary description
published for Cu in Bocklund et al.2. within the segmented regression approach by Roslyakova et al.3.

2

B. Bocklund et al., MRS Communications 9(2) (2019) 1–10. doi:10.1557/mrc.2019.59

3

I. Roslyakova et al., Calphad 55 (2016) 165–180. doi:10.1016/j.calphad.2016.09.001

76 Chapter 14. Use a custom unary reference state

https://github.com/PhasesResearchLab/ESPEI-unary-refstate-skeleton
https://doi.org/10.1557/mrc.2019.59
https://doi.org/10.1016/j.calphad.2016.09.001

ESPEI Documentation, Release 0.7.7

Assuming that you are fresh (without the skeleton downloaded yet):

1. Clone the skeleton repository: git clone https://github.com/PhasesResearchLab/
ESPEI-unary-refstate-skeleton

2. Enter the downloaded repository: cd ESPEI-unary-refstate-skeleton

3. Update the NAME = 'CustomRefstate2020' parameter in setup.py to NAME =
'Bocklund2019'

4. In the refstate.py module, create the Bockund2019Stable and Bockund2019 dictionaries (see Cre-
ating the reference state dictionaries for more details)

1. Delete the CustomRefstate2020Stable and CustomRefstate2020 variables

2. Add the stable phase Gibbs energy for Cu to the Bockund2019Stable variable

Bocklund2019Stable = OrderedDict([
('CU',
Piecewise((-0.0010514335*T**2 + 8.7685671186*T*log(exp(155.1404/T) - 1.0)

→˓+ 16.1968683846*T*log(exp(290.9421/T) - 1.0) - 11038.0904080745, And(T >= 0.
→˓01, T < 103.57591)), (-2.15621953171362e-6*T**3 + 0.000288560900942072*T**2
→˓- 0.13879113947248*T*log(T) + 8.7685671186*T*log(exp(155.1404/T) - 1.0) +
→˓16.1968683846*T*log(exp(290.9421/T) - 1.0) + 0.574637617323048*T - 11042.
→˓8822142647, And(T >= 103.57591, T < 210.33309)), (-0.002432585*T**2 + 0.
→˓4335558862135*T*log(T) + 8.7685671186*T*log(exp(155.1404/T) - 1.0) + 16.
→˓1968683846*T*log(exp(290.9421/T) - 1.0) - 2.20049706600083*T - 11002.
→˓7543747764, And(T >= 210.33309, T < 1357.77)), (-31.38*T*log(T) + 183.
→˓555483717662*T - 12730.2995781851 + 7.42232714807953e+28/T**9, And(T >=
→˓1357.77, T < 3200.0)), (0, True))),
])

3. Add the lattice stability for all elements, including the stable phase, to the Bocklund2019 variable

5. Install the package using pip: pip install -e .

6. You can now use your reference state in ESPEI, and even change the definitions on the fly.

14.1.2 Creating the reference state dictionaries

To define the reference state and lattice stabilities, you must define two ordered dictionaries, one <NAME>Stable
and one <NAME> with the Gibbs energies of the stable phase at 298.15 K and the lattice stabilities, respectively. Note
that OrderedDict is defined in the collections module in the Python standard library.

The Gibbs energy functions defined here must be defined as valid symbolic expressions using SymPy Symbol ob-
jects and pycalphad StateVariable objects (e.g. pycalphad.variables.T, pycalphad.variables.
P), which can be (but are not required to be) piecewise in temperature. Any SymPy functions can be used (exp, log,
Piecewise, . . .) and syntax/functions can be used which are not available in commercial software (for example,
direct exponentiation to non-integer powers). Anything supported by pycalphad Model objects can be written, but
note that the TDB objects that ESPEI writes using these expressions may not be compatible with commercial software.

The <NAME>Stable dictionary defines the function corresponding to the GHSERXX function, you should interpret
this function as defining a Symbol(GHSERXX) (a SymPy Symbol object). The <NAME>Stable dictionary di-
rectly maps pure element names to SymPy functions (note that OrderedDict syntax means construction a dict from
a list of tuples).

The <NAME> dictionary maps tuples of ("XX", "PHASE_NAME") to lattice stability Gibbs energy functions,
where XX is a pure element string. The stable phase at 298.15 K should be defined by setting the energy to

14.1. Use a custom unary reference state 77

ESPEI Documentation, Release 0.7.7

Symbol(GHSERXX) is the implictly defined GHSER function, again for element XX. The lattice stabilities, if desired,
can be referenced to the Symbol(GHSERXX) function, although they are not here except for the stable FCC_A1.

from collections import OrderedDict
from sympy import *
from pycalphad.variables import P, T

Bocklund2019Stable = OrderedDict([
('CU',
Piecewise((-0.0010514335*T**2 + 8.7685671186*T*log(exp(155.1404/T) - 1.

→˓0) + 16.1968683846*T*log(exp(290.9421/T) - 1.0) - 11038.0904080745, And(T >
→˓= 0.01, T < 103.57591)), (-2.15621953171362e-6*T**3 + 0.
→˓000288560900942072*T**2 - 0.13879113947248*T*log(T) + 8.
→˓7685671186*T*log(exp(155.1404/T) - 1.0) + 16.1968683846*T*log(exp(290.9421/
→˓T) - 1.0) + 0.574637617323048*T - 11042.8822142647, And(T >= 103.57591, T
→˓< 210.33309)), (-0.002432585*T**2 + 0.4335558862135*T*log(T) + 8.
→˓7685671186*T*log(exp(155.1404/T) - 1.0) + 16.1968683846*T*log(exp(290.9421/
→˓T) - 1.0) - 2.20049706600083*T - 11002.7543747764, And(T >= 210.33309, T <
→˓1357.77)), (-31.38*T*log(T) + 183.555483717662*T - 12730.2995781851 + 7.
→˓42232714807953e+28/T**9, And(T >= 1357.77, T < 3200.0)), (0, True))),
])

Bocklund2019 = OrderedDict([
(('CU', 'HCP_A3'), Piecewise((-3.38438862938597e-7*T**3 - 0.

→˓00121182291077191*T**2 + 8.7685671186*T*log(exp(155.1404/T) - 1.0) + 16.
→˓1968683846*T*log(exp(290.9421/T) - 1.0) - 0.321147237334052*T - 10441.
→˓4393392344, And(T >= 0.01, T < 298.15)), (1.29223e-7*T**3 - 0.
→˓00265684*T**2 - 24.112392*T*log(T) + 130.685235*T - 7170.458 + 52478/T,
→˓And(T >= 298.15, T < 1357.77)), (-31.38*T*log(T) + 184.003828*T - 12942.
→˓0252504739 + 3.64167e+29/T**9, And(T >= 1357.77, T < 3200.0)), (0, True))),

(('CU', 'FCC_A1'), Piecewise((Symbol('GHSERCU'), And(T < 10000.0, T >= 1.
→˓0)))),

(('CU', 'LIQUID'), Piecewise((-3.40056501515466e-7*T**3 - 0.
→˓00121066539331185*T**2 + 8.7685671186*T*log(exp(155.1404/T) - 1.0) + 16.
→˓1968683846*T*log(exp(290.9421/T) - 1.0) - 10.033338832193*T + 2379.
→˓36422209194, And(T >= 0.01, T < 298.15)), (-5.8489e-21*T**7 + 1.29223e-
→˓7*T**3 - 0.00265684*T**2 - 24.112392*T*log(T) + 120.973331*T + 5650.
→˓32106235287 + 52478/T, And(T >= 298.15, T < 1357.77)), (-31.38*T*log(T) +
→˓173.881484*T + 409.498458129716, And(T >= 1357.77, T < 3200.0)), (0,
→˓True))),
])

14.1.3 Detailed Information

Setting up setup.py

If you’re comfortable creaing your own package or want to go dig deeper into how the skeleton works, ESPEI uses the
entry_points feature of setuptools to treat additional reference states as plugins.

A package providing a reference state to ESPEI should provide a module that has two OrderedDict objects named
<NAME>Stable and <NAME>, according to the Creating the reference state dictionaries section above. The mod-
ule can have any name, <MODULE>, (the skeleton has refstate.py). ESPEI looks for the entry_point
called espei.reference_states following the example from the setuptools documentation. Concretely, the
entry_point should be described by:

78 Chapter 14. Use a custom unary reference state

https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

ESPEI Documentation, Release 0.7.7

setup.py

from setuptools import setup

setup(# ...
entry_points={'espei.reference_states': '<NAME> = <MODULE>'}

)

where <NAME> and <MODULE> are replaced by the corresponding name of the reference state and the name of the
module with the reference states defined.

Interested readers may also find the entry_points specification here.

Debugging

If you want to test whether your modules are found, you can run the following Python code to show what reference
states were found

import espei
print(espei.refdata.INSERTED_USER_REFERENCE_STATES)

If you do this after installing the unchanged skeleton package package from this repository, you should find Custom-
Refstate2020 is printed and the dictionaries espei.refdata.CustomRefstate2020Stable and espei.
refdata.CustomRefstate2020 should be defined in the espei.refdata module. For more details on the
implementation, see the espei.refdata.find_and_insert_user_refstate function.

14.1.4 References

14.1. Use a custom unary reference state 79

https://packaging.python.org/specifications/entry-points/

ESPEI Documentation, Release 0.7.7

80 Chapter 14. Use a custom unary reference state

Part IV

Reference

81

CHAPTER 15

Advanced Schedulers

15.1 Advanced Schedulers

ESPEI uses dask-distributed for parallelization and provides an easy way to deploy clusters locally via TCP with the
mcmc.scheduler: dask setting.

Sometimes ESPEI’s dask scheduling options are not sufficiently flexible for different environments.

As an alternative to setting the cores with the mcmc.scheduler: dask setting, you can provide ESPEI with a
scheduler file from dask that has information about how to connect to a dask parallel scheduler.

This is generally a two step process of

1. Starting a scheduler with workers and writing a scheduler file

2. Running ESPEI and connecting to the existing scheduler

In order to let the system manage the memory and prevent dask from pausing or killing workers, the memory limit
should be set to zero.

15.1.1 Starting a scheduler

MPI-based dask scheduler

Dask provides a dask-mpi package that sets this up for you and creates a scheduler file to pass to ESPEI. The
scheduler information will be serialized as a JSON file that you set in your ESPEI input file.

The dask-mpi package (version 2.0.0 or greater) must be installed before you can use it:

conda install -c conda-forge --yes "dask-mpi>=2"

Note that you may also need a particular MPI implementation, conda-forge provides packages for OpenMPI or
MPICH. You can pick a particular one by installing dask-mpi using either:

83

ESPEI Documentation, Release 0.7.7

conda install -c conda-forge --yes "dask-mpi>=2" "mpi=*=openmpi"

or

conda install -c conda-forge --yes "dask-mpi>=2" "mpi=*=mpich"

or let conda pick one for you by not including any.

To start the scheduler and workers in the background, you can run the dask-mpi command (use dask-mpi
--help to check the arguments). The following command will start a scheduler on the main MPI task, then a
worker for each remaining MPI task that mpirun sees.

mpirun dask-mpi --scheduler-file my_scheduler.json --nthreads 1 --memory-limit 0 &

Generic scheduler

If you need further customization of dask schedulers, you can start a distributed Client any way you like, then write
out the scheduler file for ESPEI to use.

For example, if you name the following file start_scheduler.py, you can run this Python script in the back-
ground, which will contain the scheduler and workers, then ESPEI will connect to it.

start_scheduler.py
from distributed import Client, LocalCluster
from tornado.ioloop import IOLoop

if __name__ == '__main__':
loop = IOLoop()
cluster = LocalCluster(n_workers=4, threads_per_worker=1, memory_limit=0)
client = Client(cluster)
client.write_scheduler_file('my-scheduler.json')
loop.start() # keeps the scheduler running
loop.close()

Running start_scheduler.py &, will run this process in the background with 4 processes.

15.1.2 ESPEI Input

After starting the scheduler on the cluster, you run ESPEI like normal.

For the most part, this ESPEI input file is the same as you use locally, except the scheduler parameter is set to the
name of your scheduler file.

Here is an example for Bayesian parameter estimation using MCMC starting from a generated TDB with a scheduler
file named my-scheduler.json:

system:
phase_models: my-phases.json
datasets: my-input-data

mcmc:
iterations: 1000
input_db: my-tdb.tdb
scheduler: my-scheduler.json

84 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

15.1.3 Example Queue Script - MPI

To run on through a queueing system, you’ll often use queue scripts that start batch jobs.

This example will create an MPI scheduler using dask-mpi via mpirun (or other MPI executable). Since many
MPI jobs are run through batch schedulers, an example script for a PBS job looks like:

#!/bin/bash

#PBS -l nodes=1:ppn=20
#PBS -l walltime=48:00:00
#PBS -A open
#PBS -N espei-mpi
#PBS -o espei-mpi.out
#PBS -e espei-mpi.error

starts the scheduler on MPI and creates the scheduler file called 'my_scheduler.json
→˓'
you can replace this line with any script that starts a scheduler
e.g. a `start_scheduler.py` file
make sure it ends with `&` to run the process in the background
mpirun dask-mpi --scheduler-file my_scheduler.json --nthreads 1 --memory-limit 0 &

runs ESPEI as normal
espei --in espei-mpi-input.yaml

15.1.4 References

See http://distributed.readthedocs.io/en/latest/setup.html?highlight=dask-mpi#using-mpi for more details.

15.2 API Documentation

15.2.1 espei package

Subpackages

espei.error_functions package

Submodules

espei.error_functions.activity_error module

Calculate error due to measured activities.

espei.error_functions.activity_error.calculate_activity_error(dbf, comps,
phases, datasets,
parame-
ters=None,
phase_models=None,
callables=None,
data_weight=1.0)

Return the sum of square error from activity data

15.2. API Documentation 85

http://distributed.readthedocs.io/en/latest/setup.html?highlight=dask-mpi#using-mpi

ESPEI Documentation, Release 0.7.7

Parameters

• dbf (pycalphad.Database) – Database to consider

• comps (list) – List of active component names

• phases (list) – List of phases to consider

• datasets (espei.utils.PickleableTinyDB) – Datasets that contain single
phase data

• parameters (dict) – Dictionary of symbols that will be overridden in pycal-
phad.equilibrium

• phase_models (dict) – Phase models to pass to pycalphad calculations

• callables (dict) – Callables to pass to pycalphad

• data_weight (float) – Weight for standard deviation of activity measurements, di-
mensionless. Corresponds to the standard deviation of differences in chemical potential in
typical measurements of activity, in J/mol.

Returns A single float of the sum of square errors

Return type float

Notes

General procedure: 1. Get the datasets 2. For each dataset

a. Calculate reference state equilibrium

b. Calculate current chemical potentials

c. Find the target chemical potentials

d. Calculate error due to chemical potentials

espei.error_functions.activity_error.chempot_error(sample_chempots, tar-
get_chempots, std_dev=10.0)

Return the sum of square error from chemical potentials

sample_chempots [numpy.ndarray] Calculated chemical potentials

target_activity [numpy.ndarray] Chemical potentials to target

std_dev [float] Standard deviation of activity measurements in J/mol. Corresponds to the standard deviation of
differences in chemical potential in typical measurements of activity.

Returns Error due to chemical potentials

Return type float

espei.error_functions.activity_error.target_chempots_from_activity(component,
tar-
get_activity,
temper-
atures,
refer-
ence_result)

Return an array of experimental chemical potentials for the component

Parameters

86 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

• component (str) – Name of the component

• target_activity (numpy.ndarray) – Array of experimental activities

• temperatures (numpy.ndarray) – Ravelled array of temperatures (of same size as
exp_activity).

• reference_result (xarray.Dataset) – Dataset of the equilibrium reference state.
Should contain a singe point calculation.

Returns Array of experimental chemical potentials

Return type numpy.ndarray

espei.error_functions.context module

Convenience function to create a context for the built in error functions

espei.error_functions.context.setup_context(dbf, datasets, symbols_to_fit=None,
data_weights=None, make_callables=True)

Set up a context dictionary for calculating error.

Parameters

• dbf (Database) – A pycalphad Database that will be fit

• datasets (PickleableTinyDB) – A database of single- and multi-phase data to fit

• symbols_to_fit (list of str) – List of symbols in the Database that will be fit. If
None (default) are passed, then all parameters prefixed with VV followed by a number, e.g.
VV0001 will be fit.

Notes

A copy of the Database is made and used in the context. To commit changes back to the original database, the
dbf.symbols.update method should be used.

espei.error_functions.equilibrium_thermochemical_error module

Calculate error due to equilibrium thermochemical properties.

15.2. API Documentation 87

ESPEI Documentation, Release 0.7.7

class espei.error_functions.equilibrium_thermochemical_error.EqPropData(dbf,
species,
phases,
po-
ten-
tial_conds,
com-
po-
si-
tion_conds,
mod-
els,
params_keys,
phase_records,
out-
put,
sam-
ples,
weight,
ref-
er-
ence)

Bases: tuple

composition_conds
Alias for field number 4

dbf
Alias for field number 0

models
Alias for field number 5

output
Alias for field number 8

params_keys
Alias for field number 6

phase_records
Alias for field number 7

phases
Alias for field number 2

potential_conds
Alias for field number 3

reference
Alias for field number 11

samples
Alias for field number 9

species
Alias for field number 1

weight
Alias for field number 10

88 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.error_functions.equilibrium_thermochemical_error.build_eqpropdata(data:
<Mock
name=’mock.database.Document’
id=’139634640032912’>,
dbf:
<Mock
name=’mock.Database’
id=’139634640242384’>,
pa-
ram-
e-
ters:
Op-
tional[Dict[str,
float]]
=
None,
data_weight_dict:
Op-
tional[Dict[str,
float]]
=
None)
→
es-
pei.error_functions.equilibrium_thermochemical_error.EqPropData

Build EqPropData for the calculations corresponding to a single dataset.

Parameters

• data (tinydb.database.Document) – Document corresponding to a single ESPEI
dataset.

• dbf (Database) – Database that should be used to construct the Model and PhaseRecord
objects.

• parameters (Optional[Dict[str, float]]) – Mapping of parameter symbols
to values.

• data_weight_dict (Optional[Dict[str, float]]) – Mapping of a data type
(e.g. HM or SM) to a weight.

Returns

Return type EqPropData

15.2. API Documentation 89

ESPEI Documentation, Release 0.7.7

espei.error_functions.equilibrium_thermochemical_error.calc_prop_differences(eqpropdata:
es-
pei.error_functions.equilibrium_thermochemical_error.EqPropData,
pa-
ram-
e-
ters:
<Mock
name=’mock.ndarray’
id=’139634639999056’>,
ap-
prox-
i-
mate_equilibrium:
Op-
tional[bool]
=
False)
→
Tu-
ple[<Mock
name=’mock.ndarray’
id=’139634639999056’>,
<Mock
name=’mock.ndarray’
id=’139634639999056’>]

Calculate differences between the expected and calculated values for a property

Parameters

• eqpropdata (EqPropData) – Data corresponding to equilibrium calculations for a sin-
gle datasets.

• parameters (np.ndarray) – Array of parameters to fit. Must be sorted in the same
symbol sorted order used to create the PhaseRecords.

• approximate_equilibrium (Optional[bool]) – Whether or not to use an
approximate version of equilibrium that does not refine the solution and uses
starting_point instead.

Returns Pair of * differences between the calculated property and expected property * weights for
this dataset

Return type Tuple[np.ndarray, np.ndarray]

90 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.error_functions.equilibrium_thermochemical_error.calculate_equilibrium_thermochemical_probability(eq_thermochemical_data:
Se-
quence[espei.error_functions.equilibrium_thermochemical_error.EqPropData],
pa-
ram-
e-
ters:
<Mock
name=’mock.ndarray’
id=’139634639999056’>,
ap-
prox-
i-
mate_equilibrium:
Op-
tional[bool]
=
False)
→
float

Calculate the total equilibrium thermochemical probability for all EqPropData

Parameters

• eq_thermochemical_data (Sequence[EqPropData]) – List of equilibrium ther-
mochemical data corresponding to the datasets.

• parameters (np.ndarray) – Values of parameters for this iteration to be updated in
PhaseRecords.

• approximate_equilibrium (Optional[bool], optional) –

• eq_thermochemical_data –

Returns Sum of log-probability for all thermochemical data.

Return type float

espei.error_functions.equilibrium_thermochemical_error.get_equilibrium_thermochemical_data()
Get all the EqPropData for each matching equilibrium thermochemical dataset in the datasets

Parameters

• dbf (Database) – Database with parameters to fit

• comps (Sequence[str]) – List of pure element components used to find matching
datasets.

• phases (Sequence[str]) – List of phases used to search for matching datasets.

• datasets (PickleableTinyDB) – Datasets that contain single phase data

• parameters (Optional[Dict[str, float]]) – Mapping of parameter symbols
to values.

• data_weight_dict (Optional[Dict[str, float]]) – Mapping of a data type
(e.g. HM or SM) to a weight.

15.2. API Documentation 91

ESPEI Documentation, Release 0.7.7

Notes

Found datasets will be subsets of the components and phases. Equilibrium thermochemical data is assumed to
be any data that does not have the solver key, and does not have an output of ZPF or ACR (which correspond to
different data types than can be calculated here.)

Returns

Return type Sequence[EqPropData]

espei.error_functions.non_equilibrium_thermochemical_error module

Calculate error due to thermochemical quantities: heat capacity, entropy, enthalpy.

espei.error_functions.non_equilibrium_thermochemical_error.calculate_non_equilibrium_thermochemical_probability(dbf,
ther-
mo-
chem-
i-
cal_data,
pa-
ram-
e-
ters=None)

Calculate the weighted single phase error in the Database

Parameters

• dbf (pycalphad.Database) – Database to consider

• thermochemical_data (list) – List of thermochemical data dicts

• parameters (np.ndarray) – Array of parameters to calculate the error with.

Returns A single float of the residual sum of square errors

Return type float

Notes

There are different single phase values, HM_MIX, SM_FORM, CP_FORM, etc. Each of these have different
units and the error cannot be compared directly. To normalize all of the errors, a normalization factor must be
used. Equation 2.59 and 2.60 in Lukas, Fries, and Sundman “Computational Thermodynamics” shows how this
can be considered. Each type of error will be weighted by the reciprocal of the estimated uncertainty in the
measured value and conditions. The weighting factor is calculated by $ p_i = (Delta L_i)^{-1} $ where $ Delta
L_i $ is the uncertainty in the measurement. We will neglect the uncertainty for quantities such as temperature,
assuming they are small.

espei.error_functions.non_equilibrium_thermochemical_error.calculate_points_array(phase_constituents,
con-
fig-
u-
ra-
tion,
oc-
cu-
pan-
cies=None)

92 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

Calculate the points array to use in pycalphad calculate calls.

Converts the configuration data (and occupancies for mixing data) into the points array by looking up the indices
in the active phase constituents.

Parameters

• phase_constituents (list) – List of active constituents in a phase

• configuration (list) – List of the sublattice configuration

• occupancies (list) – List of sublattice occupancies. Required for mixing sublattices,
otherwise takes no effect.

Returns

Return type numpy.ndarray

Notes

Errors will be raised if components in the configuration are not in the corresponding phase constituents sublat-
tice.

espei.error_functions.non_equilibrium_thermochemical_error.get_prop_samples(dbf,
comps,
phase_name,
de-
sired_data)

Return data values and the conditions to calculate them by pycalphad calculate from the datasets

Parameters

• dbf (pycalphad.Database) – Database to consider

• comps (list) – List of active component names

• phase_name (str) – Name of the phase to consider from the Database

• desired_data (list) – List of dictionary datasets that contain the values to sample

Returns Dictionary of condition kwargs for pycalphad’s calculate and the expected values

Return type dict

espei.error_functions.non_equilibrium_thermochemical_error.get_thermochemical_data(dbf,
comps,
phases,
datasets,
weight_dict=None,
sym-
bols_to_fit=None)

Parameters

• dbf (pycalphad.Database) – Database to consider

• comps (list) – List of active component names

• phases (list) – List of phases to consider

• datasets (espei.utils.PickleableTinyDB) – Datasets that contain single
phase data

• weight_dict (dict) – Dictionary of weights for each data type, e.g. {‘HM’: 200, ‘SM’:
2}

15.2. API Documentation 93

ESPEI Documentation, Release 0.7.7

• symbols_to_fit (list) – Parameters to fit. Used to build the models and PhaseRe-
cords.

Returns List of data dictionaries to iterate over

Return type list

espei.error_functions.zpf_error module

Calculate driving_force due to ZPF tielines.

The general approach is similar to the PanOptimizer rough search method.

1. With all phases active, calculate the chemical potentials of the tieline endpoints via equilibrium calls. Done
in estimate_hyperplane.

2. Calculate the target chemical potentials, which are the average chemical potentials of all of the current chemical
potentials at the tieline endpoints.

3. Calculate the current chemical potentials of the desired single phases

4. The error is the difference between these chemical potentials

There’s some special handling for tieline endpoints where we do not know the composition conditions to calculate
chemical potentials at.

class espei.error_functions.zpf_error.PhaseRegion(region_phases, potential_conds,
comp_conds, phase_flags,
dbf, species, phases, models,
phase_records)

Bases: tuple

comp_conds
Alias for field number 2

dbf
Alias for field number 4

models
Alias for field number 7

phase_flags
Alias for field number 3

phase_records
Alias for field number 8

phases
Alias for field number 6

potential_conds
Alias for field number 1

region_phases
Alias for field number 0

species
Alias for field number 5

94 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.error_functions.zpf_error.calculate_zpf_error(zpf_data: Sequence[Dict[str,
Any]], parameters: <Mock
name=’mock.ndarray’
id=’139634639999056’> =
None, data_weight: int = 1.0,
approximate_equilibrium: bool
= False)

Calculate error due to phase equilibria data

zpf_data [list] Datasets that contain single phase data

phase_models [dict] Phase models to pass to pycalphad calculations

parameters [np.ndarray] Array of parameters to calculate the error with.

callables [dict] Callables to pass to pycalphad

data_weight [float] Scaling factor for the standard deviation of the measurement of a tieline which has units
J/mol. The standard deviation is 1000 J/mol and the scaling factor defaults to 1.0.

approximate_equilibrium [bool] Whether or not to use an approximate version of equilibrium that does not
refine the solution and uses starting_point instead.

Returns Log probability of ZPF error

Return type float

Notes

The physical picture of the standard deviation is that we’ve measured a ZPF line. That line corresponds to some
equilibrium chemical potentials. The standard deviation is the standard deviation of those ‘measured’ chemical
potentials.

espei.error_functions.zpf_error.driving_force_to_hyperplane(target_hyperplane_chempots:
<Mock
name=’mock.ndarray’
id=’139634639999056’>,
comps: Se-
quence[str],
phase_region: es-
pei.error_functions.zpf_error.PhaseRegion,
vertex_idx: int, pa-
rameters: <Mock
name=’mock.ndarray’
id=’139634639999056’>,
approxi-
mate_equilibrium:
bool = False) →
float

Calculate the integrated driving force between the current hyperplane and target hyperplane.

15.2. API Documentation 95

ESPEI Documentation, Release 0.7.7

espei.error_functions.zpf_error.estimate_hyperplane(phase_region: es-
pei.error_functions.zpf_error.PhaseRegion,
parameters: <Mock
name=’mock.ndarray’
id=’139634639999056’>,
approximate_equilibrium:
bool = False) → <Mock
name=’mock.ndarray’
id=’139634639999056’>

Calculate the chemical potentials for the target hyperplane, one vertex at a time

Notes

This takes just one set of phase equilibria, a phase region, e.g. a dataset point of [[‘FCC_A1’, [‘CU’], [0.1]],
[‘LAVES_C15’, [‘CU’], [0.3]]] and calculates the chemical potentials given all the phases possible at the given
compositions. Then the average chemical potentials of each end point are taken as the target hyperplane for the
given equilibria.

espei.error_functions.zpf_error.extract_conditions(all_conditions: Dict[<Mock
name=’mock.variables.StateVariable’
id=’139634640000592’>,
<Mock name=’mock.ndarray’
id=’139634639999056’>],
idx: int) → Dict[<Mock
name=’mock.variables.StateVariable’
id=’139634640000592’>, float]

Conditions are either scalar or 1d arrays for the conditions in the entire dataset. This function extracts the
condition corresponding to the current region, based on the index in the 1d condition array.

espei.error_functions.zpf_error.extract_phases_comps(phase_region)
Extract the phase names, phase compositions and any phase flags from each tie-line point in the phase region

espei.error_functions.zpf_error.get_zpf_data()
Return the ZPF data used in the calculation of ZPF error

Parameters

• comps (list) – List of active component names

• phases (list) – List of phases to consider

• datasets (espei.utils.PickleableTinyDB) – Datasets that contain single
phase data

• parameters (dict) – Dictionary mapping symbols to optimize to their initial values

Returns List of data dictionaries with keys weight, data_comps and phase_regions.
data_comps are the components for the data in question. phase_regions are the ZPF
phases, state variables and compositions.

Return type list

Module contents

Functions for calculating error.

96 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.optimizers package

Submodules

espei.optimizers.graph module

Defines a OptNode and OptGraph to be used by OptimizerBase subclasses. Together they define the path of one or
more optimizations and can be used to store and replay optimization history.

class espei.optimizers.graph.OptGraph(root)
Bases: object

Directed acyclic graph of optimal parameters.

Notes

The OptGraph defines a directed acyclic graph of commits. Each commit corresponds to a single OptNode. The
root node is intended to be the fresh parameters from the database before any optimization. Therefore, any path
from the root node to any other node represents a set of optimizations to the parameters in the database.

add_node(node, parent)

static get_path_to_node(node)
Return the path from the root to the node.

Parameters node (OptNode) –

Returns

Return type list of OptNode

get_transformation_dict(node)
Return a dictionary of parameters from the path walked from the root to the passed node.

Parameters node (OptNode) –

Returns

Return type dict

class espei.optimizers.graph.OptNode(parameters, datasets, node_id=None)
Bases: object

Node as the result of an optimization.

parameters

Type dict

datasets

Type PickleableTinyDB

id

Type int

parent

Type OptNode

children

Type list of OptNode

15.2. API Documentation 97

ESPEI Documentation, Release 0.7.7

Notes

OptNodes are individual nodes in the graph that correspond to the result of a call to fit - they represent optimized
parameters given the parent state and some data (also part of the OptNode).

Each OptNode can only be derived from one set of parameters, however one parameter state may be a branching
point to many new parameter states, so an OptNode can have only one parent, but many children.

espei.optimizers.opt_base module

class espei.optimizers.opt_base.OptimizerBase(dbf)
Bases: object

Enable fitting and replaying fitting steps

commit()

discard()
Discard all staged nodes

fit(symbols, datasets, *args, **kwargs)

static predict(params, context)
Given a set of parameters and a context, return the resulting sum of square error.

Parameters

• params (list) – 1 dimensional array of parameters

• context (dict) – Dictionary of arguments/keyword arguments to pass to functions

Returns

Return type float

reset_database()
Set the Database to the state of the current node

espei.optimizers.opt_mcmc module

class espei.optimizers.opt_mcmc.EmceeOptimizer(dbf, scheduler=None)
Bases: espei.optimizers.opt_base.OptimizerBase

An optimizer using an EnsembleSampler based on Goodman and Weare [1] implemented in emcee [2]

scheduler
An object implementing a map function

Type mappable

save_interval
Interval of iterations to save the tracefile and probfile.

Type int

tracefile
Filename to store the trace with NumPy.save. Array has shape (chains, iterations, parameters). Defaults to
None.

Type str

98 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

probfile
filename to store the log probability with NumPy.save. Has shape (chains, iterations)

Type str

References

[1] Goodman and Weare, Ensemble Samplers with Affine Invariance. Commun. Appl. Math. Comput. Sci. 5,
65-80 (2010). [2] Foreman-Mackey, Hogg, Lang, Goodman, emcee: The MCMC Hammer. Publ. Astron. Soc.
Pac. 125, 306-312 (2013).

do_sampling(chains, iterations)

static get_priors(prior, symbols, params)
Build priors for a particular set of fitting symbols and initial parameters. Returns a dict that should be used
to update the context.

Parameters

• prior (dict or PriorSpec or None) – Prior to initialize. See the docs on

• symbols (list of str) – List of symbols that will be fit

• params (list of float) – List of parameter values corresponding to the symbols.
These should be the initial parameters that the priors will be based off of.

static initialize_chains_from_trace(restart_trace)

static initialize_new_chains(params, chains_per_parameter, std_deviation, determinis-
tic=True)

Return an array of num_samples from a Gaussian distribution about each parameter.

Parameters

• params (ndarray) – 1D array of initial parameters that will be the mean of the distri-
bution.

• num_samples (int) – Number of chains to initialize.

• chains_per_parameter (int) – number of chains for each parameter. Must be an
even integer greater or equal to 2. Defaults to 2.

• std_deviation (float) – Fractional standard deviation of the parameters to use for
initialization.

• deterministic (bool) – True if the parameters should be generated deterministically.

Returns

Return type ndarray

Notes

Parameters are sampled from normal(loc=param, scale=param*std_deviation). A pa-
rameter of zero will produce a standard deviation of zero and therefore only zeros will be sampled. This
will break emcee’s StretchMove for this parameter and only zeros will be selected.

static predict(params, **ctx)
Calculate lnprob = lnlike + lnprior

15.2. API Documentation 99

ESPEI Documentation, Release 0.7.7

save_sampler_state()
Convenience function that saves the trace and lnprob if they haven’t been set to None by the user.

Requires that the sampler attribute be set.

espei.optimizers.opt_scipy module

class espei.optimizers.opt_scipy.SciPyOptimizer(dbf)
Bases: espei.optimizers.opt_base.OptimizerBase

static predict(params, ctx)
Given a set of parameters and a context, return the resulting sum of square error.

Parameters

• params (list) – 1 dimensional array of parameters

• context (dict) – Dictionary of arguments/keyword arguments to pass to functions

Returns

Return type float

espei.optimizers.utils module

exception espei.optimizers.utils.OptimizerError
Bases: BaseException

Module contents

espei.parameter_selection package

Submodules

espei.parameter_selection.model_building module

Building candidate models

espei.parameter_selection.model_building.build_candidate_models(configuration,
features)

Return a dictionary of features and candidate models

Parameters

• configuration (tuple) – Configuration tuple, e.g. ((‘A’, ‘B’, ‘C’), ‘A’)

• features (dict) – Dictionary of {str: list} of generic features for a model, not consider-
ing the configuration. For example: {‘CPM_FORM’: [sympy.S.One, v.T, v.T**2, v.T**3]}

Returns Dictionary of {feature: [candidate_models])

Return type dict

100 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

Notes

Currently only works for binary and ternary interactions.

Candidate models match the following spec: 1. Candidates with multiple features specified will have 2. orders
of parameters (L0, L0 and L1, . . .) have the same number of temperatures

Note that high orders of parameters with multiple temperatures are not required to contain all the temperatures
of the low order parameters. For example, the following parameters can be generated L0: A L1: A + BT

espei.parameter_selection.model_building.build_feature_sets(temperature_features,
interac-
tion_features)

Return a list of broadcasted features

Parameters

• temperature_features (list) – List of temperature features that will become a
successive_list, such as [TlogT, T-1, T2]

• interaction_features (list) – List of interaction features that will become a suc-
cessive_list, such as [YS, YS*Z, YS*Z**2]

Returns

Return type list

Notes

This allows two sets of features, e.g. [TlogT, T-1, T2] and [YS, YS*Z, YS*Z**2] and generates a list of feature
sets where the temperatures and interactions are broadcasted successively.

Generates candidate feature sets like: L0: A + BT, L1: A L0: A , L1: A + BT

but not lists that are not successive: L0: A + BT, L1: Nothing, L2: A L0: Nothing, L1: A + BT

There’s still some debate whether it makes sense from an information theory perspective to add a L1 B term
without an L0 B term. However this might be more representative of how people usually model thermodynamics.

Does not distribute multiplication/sums or make assumptions about the elements of the feature lists. They can
be strings, ints, objects, tuples, etc..

The number of features (related to the complexity) is a geometric series. For N temperature features and M
interaction features, the total number of feature sets should be $N*(1-N**M)/(1-N)$. If $N=1$, then there are
M total feature sets.

espei.parameter_selection.model_building.make_successive(xs)
Return a list of successive combinations

Parameters xs (list) – List of elements, e.g. [X, Y, Z]

Returns List of combinations where each combination include all the preceding elements

Return type list

Examples

>>> make_successive(['W', 'X', 'Y', 'Z'])
[['W'], ['W', 'X'], ['W', 'X', 'Y'], ['W', 'X', 'Y', 'Z']]

15.2. API Documentation 101

ESPEI Documentation, Release 0.7.7

espei.parameter_selection.redlich_kister module

Tools for construction Redlich-Kister polynomials used in parameter selection.

espei.parameter_selection.redlich_kister.calc_interaction_product(site_fractions)
Calculate the interaction product for sublattice configurations

Parameters site_fractions (list) – List of sublattice configurations. Sites on each sublat-
tice be in order with respect to the elements in the sublattice. The list should be 3d of (configu-
rations, sublattices, values)

Returns List of interaction products, Z, for each sublattice

Return type list

Examples

>>> # interaction product for an (A) configuration
>>> calc_interaction_product([[1.0]]) # doctest: +ELLIPSIS
[1.0]
>>> # interaction product for [(A,B), (A,B)(A)] configurations that are equal
>>> calc_interaction_product([[[0.5, 0.5]], [[0.5, 0.5], 1]]) # doctest:
→˓+ELLIPSIS
[0.0, 0.0]
>>> # interaction product for an [(A,B)] configuration
>>> calc_interaction_product([[[0.1, 0.9]]]) # doctest: +ELLIPSIS
[-0.8]
>>> # interaction product for an [(A,B)(A,B)] configuration
>>> calc_interaction_product([[[0.2, 0.8], [0.4, 0.6]]]) # doctest: +ELLIPSIS
[0.12]
>>> # ternary case, (A,B,C) interaction
>>> calc_interaction_product([[[0.333, 0.333, 0.334]]])
[[0.333, 0.333, 0.334]]
>>> # ternary 2SL case, (A,B,C)(A) interaction
>>> calc_interaction_product([[[0.333, 0.333, 0.334], 1.0]])
[[0.333, 0.333, 0.334]]

espei.parameter_selection.redlich_kister.calc_site_fraction_product(site_fractions)
Calculate the site fraction product for sublattice configurations

Parameters site_fractions (list) – List of sublattice configurations. The list should be 3d
of (configurations, sublattices, values)

Returns List of site fraction products, YS, for each sublattice

Return type list

Examples

>>> # site fraction product for an (A,B)(A) configuration
>>> calc_site_fraction_product([[[0.2, 0.8], 1.0]]) # doctest: +ELLIPSIS
[0.16...]
>>> # site fraction product for [(A,B)(A), (A,B)(A)] configurations
>>> calc_site_fraction_product([[[0.2, 0.8], 1.0], [[0.3, 0.7], 1.0]]) #
→˓doctest: +ELLIPSIS
[0.16..., 0.21]
>>> # site fraction product for [(A,B)(A,B)] configurations

(continues on next page)

102 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

(continued from previous page)

>>> calc_site_fraction_product([[[0.2, 0.8], [0.4, 0.6]]]) # doctest: +ELLIPSIS
[0.0384...]
>>> # ternary case, (A,B,C) interaction
>>> calc_site_fraction_product([[[0.25, 0.25, 0.5]]])
[0.03125]

espei.parameter_selection.selection module

Fit, score and select models

espei.parameter_selection.selection.fit_model(feature_matrix, data_quantities,
ridge_alpha, weights=None)

Return model coefficients fit by scikit-learn’s LinearRegression

Parameters

• feature_matrix (ndarray) – (M*N) regressor matrix. The transformed model inputs
(y_i, T, P, etc.)

• data_quantities (ndarray) – (M,) response vector. Target values of the output (e.g.
HM_MIX) to reproduce.

• ridge_alpha (float) – Value of the $alpha$ hyperparameter used in ridge regression.
Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression.
For now, the parameter is applied to all features.

Returns List of model coefficients of shape (N,)

Return type list

Notes

Solve Ax = b. x are the desired model coefficients. A is the ‘feature_matrix’. b corrresponds to ‘data_quantities’.

espei.parameter_selection.selection.score_model(feature_matrix, data_quantities,
model_coefficients, feature_list,
weights, aicc_factor=None,
rss_numerical_limit=1e-16)

Use the AICc to score a model that has been fit.

Parameters

• feature_matrix (ndarray) – (M*N) regressor matrix. The transformed model inputs
(y_i, T, P, etc.)

• data_quantities (ndarray) – (M,) response vector. Target values of the output (e.g.
HM_MIX) to reproduce.

• model_coefficients (list) – List of fitted model coefficients to be scored. Has
shape (N,).

• feature_list (list) – Polynomial coefficients corresponding to each column of ‘fea-
ture_matrix’. Has shape (N,). Purely a logging aid.

• aicc_factor (float) – Multiplication factor for the AICc’s parameter penalty.

• rss_numerical_limit (float) – Anything with an absolute value smaller than this
is set to zero.

15.2. API Documentation 103

ESPEI Documentation, Release 0.7.7

Returns A model score

Return type float

Notes

Solve Ax = b, where ‘feature_matrix’ is A and ‘data_quantities’ is b.

The likelihood function is a simple least squares with no regularization. The form of the AIC is valid under
assumption all sample variances are random and Gaussian, model is univariate. It is assumed the model here is
univariate with T.

espei.parameter_selection.selection.select_model(candidate_models, ridge_alpha,
weights, aicc_factor=None)

Select a model from a series of candidates by fitting and scoring them

Parameters

• candidate_models (list) – List of tuples of (features, feature_matrix,
data_quantities)

• ridge_alpha (float) – Value of the $alpha$ hyperparameter used in ridge regression.
Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression.
For now, the parameter is applied to all features.

• aicc_factor (float) – Multiplication factor for the AICc’s parameter penalty.

Returns Tuple of (feature_list, model_coefficients) for the highest scoring model

Return type tuple

espei.parameter_selection.ternary_parameters module

Build fittable models for ternary parameter selection

espei.parameter_selection.ternary_parameters.build_ternary_feature_matrix(prop,
can-
di-
date_models,
de-
sired_data)

Return an MxN matrix of M data sample and N features.

Parameters

• prop (str) – String name of the property, e.g. ‘HM_MIX’

• candidate_models (list) – List of SymPy parameters that can be fit for this property.

• desired_data (dict) – Full dataset dictionary containing values, conditions, etc.

Returns An MxN matrix of M samples (from desired data) and N features.

Return type numpy.ndarray

espei.parameter_selection.utils module

Tools used across parameter selection modules

104 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.parameter_selection.utils.get_data_quantities(desired_property, fixed_model,
fixed_portions, data)

Parameters

• desired_property (str) – String property corresponding to the features that could be
fit, e.g. HM, SM_FORM, CPM_MIX

• fixed_model (pycalphad.Model) – Model with all lower order (in composition)
terms already fit. Pure element reference state (GHSER functions) should be set to zero.

• fixed_portions (List[sympy.Expr]) – SymPy expressions for model parame-
ters and interaction productions for higher order (in T) terms for this property, e.g. [0,
3.0*YS*v.T]. In [qty]/mole-formula.

• data (List[Dict[str, Any]]) – ESPEI single phase datasets for this property.

Returns np.ndarray[– Ravelled data quantities in [qty]/mole-formula

Return type

]

Notes

pycalphad Model parameters (and therefore fixed_portions) are stored as per mole-formula quantites, but the
calculated properties and our data are all in [qty]/mole-atoms. We multiply by mole-atoms/mole-formula to
convert the units to [qty]/mole-formula.

espei.parameter_selection.utils.shift_reference_state(desired_data, fea-
ture_transform, fixed_model,
mole_atoms_per_mole_formula_unit)

Shift _MIX or _FORM data to a common reference state in per mole-atom units.

Parameters

• desired_data (List[Dict[str, Any]]) – ESPEI single phase dataset

• feature_transform (Callable) – Function to transform an AST for the GM prop-
erty to the property of interest, i.e. entropy would be lambda GM: -sympy.diff(GM,
v.T)

• fixed_model (pycalphad.Model) – Model with all lower order (in composition)
terms already fit. Pure element reference state (GHSER functions) should be set to zero.

• mole_atoms_per_mole_formula_unit (float) – Number of moles of atoms in
every mole atom unit.

Returns Data for this feature in [qty]/mole-formula in a common reference state.

Return type np.ndarray

Raises ValueError

Notes

pycalphad Model parameters are stored as per mole-formula quantites, but the calculated properties and our
data are all in [qty]/mole-atoms. We multiply by mole-atoms/mole-formula to convert the units to [qty]/mole-
formula.

15.2. API Documentation 105

ESPEI Documentation, Release 0.7.7

Module contents

Submodules

espei.analysis module

Tools for analyzing ESPEI runs

espei.analysis.truncate_arrays(trace_array, prob_array=None)
Return slides of ESPEI output arrays with any empty remaining iterations (zeros) removed.

Parameters

• trace_array (np.ndarray) – Array of the trace from an ESPEI run. Should have
shape (chains, iterations, parameters)

• prob_array (np.ndarray) – Array of the lnprob output from an ESPEI run. Should
have shape (chains, iterations)

Returns A slide of the zeros-removed trace array is returned if only the trace is passed. Otherwise a
tuple of both the trace and lnprob are returned.

Return type np.ndarry or (np.ndarray, np.ndarray)

Examples

>>> from espei.analysis import truncate_arrays
>>> trace = np.array([[[1, 0], [2, 0], [3, 0], [0, 0]], [[0, 2], [0, 4], [0, 6],
→˓[0, 0]]]) # 3 iterations of 4 allocated
>>> truncate_arrays(trace).shape
(2, 3, 2)

espei.citing module

Define citations for ESPEI

espei.core_utils module

Internal utilities for developer use. May not be useful to users.

espei.core_utils.get_data(comps, phase_name, configuration, symmetry, datasets, prop)
Return list of cleaned single phase datasets matching the passed arguments.

Parameters

• comps (list) – List of string component names

• phase_name (str) – Name of phase

• configuration (tuple) – Sublattice configuration as a tuple, e.g. (“CU”, (“CU”,
“MG”))

• symmetry (list of lists) – List of sublattice indices with symmetry

• datasets (espei.utils.PickleableTinyDB) – Database of datasets to search for
data

• prop (list) – String name of the property of interest.

106 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

Returns List of datasets matching the arguments.

Return type list

espei.core_utils.get_prop_data(comps, phase_name, prop, datasets, additional_query=None)
Return datasets that match the components, phase and property

Parameters

• comps (list) – List of components to get data for

• phase_name (str) – Name of the phase to get data for

• prop (str) – Property to get data for

• datasets (espei.utils.PickleableTinyDB) – Datasets to search for data

• additional_query (tinydb.Query) – A TinyDB Query object to search for. If
None, a Query() will be created that does nothing.

Returns List of dictionary datasets that match the criteria

Return type list

espei.core_utils.get_samples(desired_data)
Return the data values from desired_data, transformed to interaction products.

Parameters desired_data (list) – List of matched desired data, e.g. for a single property

Returns Tuples of (temperature, (site fraction product, interaction product))

Return type List[Tuple[float, Tuple[float, float]]]

Notes

Transforms data to interaction products, e.g. YS*{}^{xs}G=YS*XS*DXS^{n} {}^{n}L

espei.core_utils.get_weights(desired_data)

espei.core_utils.ravel_conditions(values, *conditions, **kwargs)
Broadcast and flatten conditions to the shape dictated by the values.

Special handling for ZPF data that does not have nice array values.

Parameters

• values (list) – Multidimensional lists of values

• conditions (list) – List of conditions to broadcast. Must be the same length as the
number of dimensions of the values array. In code, the following must be True: all([s ==
len(cond) for s, cond in zip(values.shape, conditions)])

• zpf (bool, optional) – Whether to consider values as a special case of ZPF data (not
an even grid of conditions) Default is False

Returns Tuple of ravelled conditions

Return type tuple

Notes

The current implementation of ZPF data only has the shape for one condition and this assumption is hardcoded
in various places.

Here we try to be as general as possible by explicitly calculating the shape of the ZPF values.

15.2. API Documentation 107

ESPEI Documentation, Release 0.7.7

A complication of this is that the user of this function must pass the correct conditions because usually T and P
are specified in ZPF (but, again, only one can actually be a condition given the current shape).

espei.core_utils.ravel_zpf_values(desired_data, independent_comps, conditions=None)
Unpack the phases and compositions from ZPF data. Dependent components are converted to independent
components.

Parameters

• desired_data (espei.utils.PickleableTinyDB) – The selected data

• independent_comps (list) – List of indepdendent components. Used for mass bal-
ance component conversion

• conditions (dict) – Conditions to filter for. Right now only considers fixed tempera-
tures

Returns A dictonary of list of lists of tuples. Each dictionary key is the number of phases in equi-
librium, e.g. a key “2” might have values [[(PHASE_NAME_1, {‘C1’: X1, ‘C2’: X2}, refkey),
(PHASE_NAME_2, {‘C1’: X1, ‘C2’: X2}, refkey)], . . .] Three would have three inner tuples
and so on.

Return type dict

espei.core_utils.recursive_map(f, x)
map, but over nested lists

Parameters

• f (callable) – Function to apply to x

• x (list or value) – Value passed to v

Returns

Return type list or value

espei.core_utils.symmetry_filter(x, config, symmetry)
Return True if the candidate sublattice configuration has any symmetry which matches the phase model sym-
metry.

Parameters

• x (dict) – the candidate dataset ‘solver’ dict. Must contain the “sublattice_configurations”
key

• config (list) – the configuration of interest: e.g. [‘AL’, [‘AL’, ‘NI’], ‘VA’]

• symmetry (list) – tuple of tuples where each inner tuple is a group of equivalent sublat-
tices. A value of ((0, 1), (2, 3, 4)) means that sublattices at indices 0 and 1 are symmetrically
equivalent to each other and sublattices at indices 2, 3, and 4 are symetrically equivalent to
each other.

Returns

Return type bool

espei.datasets module

exception espei.datasets.DatasetError
Bases: Exception

Exception raised when datasets are invalid.

108 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.datasets.add_ideal_exclusions(datasets)
If there are single phase datasets present and none of them have an excluded_model_contributions key, add ideal
exclusions automatically and emit a DeprecationWarning that this feature will be going away.

Parameters datasets (PickleableTinyDB) –

Returns

Return type PickleableTinyDB

espei.datasets.apply_tags(datasets, tags)
Modify datasets using the tags system

Parameters

• datasets (PickleableTinyDB) – Datasets to modify

• tags (dict) – Dictionary of {tag: update_dict}

Returns

Return type PickleableTinyDB

Notes

In general, everything replaces or is additive. We use the following update rules: 1. If the update value is a list,
extend the existing list (empty list if key does not exist) 2. If the update value is scalar, override the previous
(deleting any old value, if present) 3. If the update value is a dict, update the exist dict (empty dict if dict does
not exist) 4. Otherwise, the value is updated, overriding the previous

Examples

>>> from espei.utils import PickleableTinyDB
>>> from tinydb.storages import MemoryStorage
>>> ds = PickleableTinyDB(storage=MemoryStorage)
>>> doc_id = ds.insert({'tags': ['dft'], 'excluded_model_contributions': ['contrib
→˓']})
>>> my_tags = {'dft': {'excluded_model_contributions': ['idmix', 'mag'], 'weight
→˓': 5.0}}
>>> from espei.datasets import apply_tags
>>> apply_tags(ds, my_tags)
>>> all_data = ds.all()
>>> all(d['excluded_model_contributions'] == ['contrib', 'idmix', 'mag'] for d in
→˓all_data)
True
>>> all(d['weight'] == 5.0 for d in all_data)
True

espei.datasets.check_dataset(dataset)
Ensure that the dataset is valid and consistent.

Currently supports the following validation checks: * data shape is valid * phases and components used match
phases and components entered * individual shapes of keys, such as ZPF, sublattice configs and site ratios

Planned validation checks: * all required keys are present

Note that this follows some of the implicit assumptions in ESPEI at the time of writing, such that conditions are
only P, T, configs for single phase and essentially only T for ZPF data.

Parameters dataset (dict) – Dictionary of the standard ESPEI dataset.

15.2. API Documentation 109

ESPEI Documentation, Release 0.7.7

Returns

Return type None

Raises DatasetError – If an error is found in the dataset

espei.datasets.clean_dataset(dataset)
Clean an ESPEI dataset dictionary.

Parameters dataset (dict) – Dictionary of the standard ESPEI dataset. dataset : dic

Returns Modified dataset that has been cleaned

Return type dict

Notes

Assumes a valid, checked dataset. Currently handles * Converting expected numeric values to floats

espei.datasets.load_datasets(dataset_filenames)
Create a PickelableTinyDB with the data from a list of filenames.

Parameters dataset_filenames ([str]) – List of filenames to load as datasets

Returns

Return type PickleableTinyDB

espei.datasets.recursive_glob(start, pattern=’*.json’)
Recursively glob for the given pattern from the start directory.

Parameters

• start (str) – Path of the directory to walk while for file globbing

• pattern (str) – Filename pattern to match in the glob.

Returns List of matched filenames

Return type [str]

espei.espei_script module

Automated fitting script.

A minimal run must specify an input.json and a datasets folder containing input files.

espei.espei_script.get_dask_config_paths()

espei.espei_script.get_run_settings(input_dict)
Validate settings from a dict of possible input.

Performs the following actions: 1. Normalize (apply defaults) 2. Validate against the schema

Parameters input_dict (dict) – Dictionary of input settings

Returns Validated run settings

Return type dict

Raises ValueError

espei.espei_script.log_version_info()
Print version info to the log

110 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.espei_script.main()
Handle starting ESPEI from the command line. Parse command line arguments and input file.

espei.espei_script.run_espei(run_settings)
Wrapper around the ESPEI fitting procedure, taking only a settings dictionary.

Parameters run_settings (dict) – Dictionary of input settings

Returns

Return type Either a Database (for generate parameters only) or a tuple of (Database, sampler)

espei.mcmc module

Legacy module for running MCMC in ESPEI

espei.mcmc.mcmc_fit(dbf, datasets, iterations=1000, save_interval=1, chains_per_parameter=2,
chain_std_deviation=0.1, scheduler=None, tracefile=None, prob-
file=None, restart_trace=None, deterministic=True, prior=None,
mcmc_data_weights=None)

Run MCMC via the EmceeOptimizer class

Parameters

• dbf (Database) – A pycalphad Database to fit with symbols to fit prefixed with VV fol-
lowed by a number, e.g. VV0001

• datasets (PickleableTinyDB) – A database of single- and multi-phase data to fit

• iterations (int) – Number of trace iterations to calculate in MCMC. Default is 1000
iterations.

• save_interval (int) – interval of iterations to save the tracefile and probfile

• chains_per_parameter (int) – number of chains for each parameter. Must be an
even integer greater or equal to 2. Defaults to 2.

• chain_std_deviation (float) – standard deviation of normal for parameter initial-
ization as a fraction of each parameter. Must be greater than 0. Default is 0.1, which is
10%.

• scheduler (callable) – Scheduler to use with emcee. Must implement a map method.

• tracefile (str) – filename to store the trace with NumPy.save. Array has shape (chains,
iterations, parameters)

• probfile (str) – filename to store the log probability with NumPy.save. Has shape
(chains, iterations)

• restart_trace (np.ndarray) – ndarray of the previous trace. Should have shape
(chains, iterations, parameters)

• deterministic (bool) – If True, the emcee sampler will be seeded to give deter-
ministic sampling draws. This will ensure that the runs with the exact same database,
chains_per_parameter, and chain_std_deviation (or restart_trace) will produce exactly the
same results.

• prior (str) – Prior to use to generate priors. Defaults to ‘zero’, which keeps backwards
compatibility. Can currently choose ‘normal’, ‘uniform’, ‘triangular’, or ‘zero’.

• mcmc_data_weights (dict) – Dictionary of weights for each data type, e.g. {‘ZPF’:
20, ‘HM’: 2}

15.2. API Documentation 111

ESPEI Documentation, Release 0.7.7

espei.paramselect module

The paramselect module handles automated parameter selection for linear models.

Automated Parameter Selection End-members

Note: All magnetic parameters from literature for now. Note: No fitting below 298 K (so neglect third law issues for
now).

For each step, add one parameter at a time and compute AICc with max likelihood.

Cp - TlnT, T**2, T**-1, T**3 - 4 candidate models (S and H only have one required parameter each. Will fit in full
MCMC procedure)

Choose parameter set with best AICc score.

espei.paramselect.fit_formation_energy(dbf, comps, phase_name, configuration,
symmetry, datasets, ridge_alpha=None,
aicc_phase_penalty=None, features=None)

Find suitable linear model parameters for the given phase. We do this by successively fitting heat capacities,
entropies and enthalpies of formation, and selecting against criteria to prevent overfitting. The “best” set of
parameters minimizes the error without overfitting.

Parameters

• dbf (Database) – pycalphad Database. Partially complete, so we know what degrees of
freedom to fix.

• comps ([str]) – Names of the relevant components.

• phase_name (str) – Name of the desired phase for which the parameters will be found.

• configuration (ndarray) – Configuration of the sublattices for the fitting procedure.

• symmetry ([[int]]) – Symmetry of the sublattice configuration.

• datasets (PickleableTinyDB) – All the datasets desired to fit to.

• ridge_alpha (float) – Value of the $alpha$ hyperparameter used in ridge regression.
Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression.
For now, the parameter is applied to all features.

• aicc_feature_factors (dict) – Map of phase name to feature to a multiplication
factor for the AICc’s parameter penalty.

• features (dict) – Maps “property” to a list of features for the linear model. These
will be transformed from “GM” coefficients e.g., {“CPM_FORM”: (v.T*sympy.log(v.T),
v.T**2, v.T**-1, v.T**3)} (Default value = None)

Returns {feature: estimated_value}

Return type dict

espei.paramselect.fit_ternary_interactions(dbf, phase_name, symmetry, endmem-
bers, datasets, ridge_alpha=None,
aicc_phase_penalty=None)

Fit ternary interactions for a database in place

Parameters

• dbf (Database) – pycalphad Database to add parameters to

• phase_name (str) – Name of the phase to fit

• symmetry (list) – List of symmetric sublattices, e.g. [[0, 1, 2], [3, 4]]

112 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

• endmembers (list) – List of endmember tuples, e.g. [(‘CU’, ‘MG’)]

• datasets (PickleableTinyDB) – TinyDB database of datasets

• ridge_alpha (float) – Value of the $alpha$ hyperparameter used in ridge regression.
Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression.
For now, the parameter is applied to all features.

Returns Modified the Database in place

Return type None

espei.paramselect.generate_parameters(phase_models, datasets, ref_state, excess_model,
ridge_alpha=None, aicc_penalty_factor=None,
dbf=None)

Generate parameters from given phase models and datasets

Parameters

• phase_models (dict) – Dictionary of components and phases to fit.

• datasets (PickleableTinyDB) – database of single- and multi-phase to fit.

• ref_state (str) – String of the reference data to use, e.g. ‘SGTE91’ or ‘SR2016’

• excess_model (str) – String of the type of excess model to fit to, e.g. ‘linear’

• ridge_alpha (float) – Value of the $alpha$ hyperparameter used in ridge regression.
Defaults to None, which falls back to ordinary least squares regression. For now, the param-
eter is applied to all features.

• aicc_penalty_factor (dict) – Map of phase name to feature to a multiplication
factor for the AICc’s parameter penalty.

• dbf (Database) – Initial pycalphad Database that can have parameters that would not be
fit by ESPEI

Returns

Return type pycalphad.Database

espei.paramselect.get_next_symbol(dbf)
Return a string name of the next free symbol to set

Parameters dbf (Database) – pycalphad Database. Must have the varcounter attribute set
to an integer.

Returns

Return type str

espei.paramselect.phase_fit(dbf, phase_name, symmetry, subl_model, site_ratios, datasets, ref-
data, ridge_alpha, aicc_penalty=None, aliases=None)

Generate an initial CALPHAD model for a given phase and sublattice model.

Parameters

• dbf (Database) – pycalphad Database to add parameters to.

• phase_name (str) – Name of the phase.

• symmetry ([[int]]) – Sublattice model symmetry.

• subl_model ([[str]]) – Sublattice model for the phase of interest.

• site_ratios ([float]) – Number of sites in each sublattice, normalized to one atom.

• datasets (PickleableTinyDB) – All datasets to consider for the calculation.

15.2. API Documentation 113

ESPEI Documentation, Release 0.7.7

• refdata (dict) – Maps tuple(element, phase_name) -> SymPy object defining energy
relative to SER

• ridge_alpha (float) – Value of the $alpha$ hyperparameter used in ridge regression.
Defaults to 1.0e-100, which should be degenerate with ordinary least squares regression.
For now, the parameter is applied to all features.

• aicc_penalty (dict) – Map of phase name to feature to a multiplication factor for the
AICc’s parameter penalty.

• aliases ([str]) – Alternative phase names. Useful for matching against reference data
or other datasets. (Default value = None)

Returns Modifies the dbf.

Return type None

espei.plot module

Plotting of input data and calculated database quantities

espei.plot.dataplot(comps, phases, conds, datasets, ax=None, plot_kwargs=None,
tieline_plot_kwargs=None)

Plot datapoints corresponding to the components, phases, and conditions.

Parameters

• comps (list) – Names of components to consider in the calculation.

• phases ([]) – Names of phases to consider in the calculation.

• conds (dict) – Maps StateVariables to values and/or iterables of values.

• datasets (PickleableTinyDB) –

• ax (matplotlib.Axes) – Default axes used if not specified.

• plot_kwargs (dict) – Additional keyword arguments to pass to the matplotlib plot
function for points

• tieline_plot_kwargs (dict) – Additional keyword arguments to pass to the mat-
plotlib plot function for tielines

Returns A plot of phase equilibria points as a figure

Return type matplotlib.Axes

Examples

>>> from espei.datasets import load_datasets, recursive_glob # doctest: +SKIP
>>> from espei.plot import dataplot # doctest: +SKIP
>>> datasets = load_datasets(recursive_glob('.', '*.json')) # doctest: +SKIP
>>> my_phases = ['BCC_A2', 'CUMG2', 'FCC_A1', 'LAVES_C15', 'LIQUID'] # doctest:
→˓+SKIP
>>> my_components = ['CU', 'MG' 'VA'] # doctest: +SKIP
>>> conditions = {v.P: 101325, v.T: (500, 1000, 10), v.X('MG'): (0, 1, 0.01)} #
→˓doctest: +SKIP
>>> dataplot(my_components, my_phases, conditions, datasets) # doctest: +SKIP

114 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.plot.eqdataplot(eq, datasets, ax=None, plot_kwargs=None)
Plot datapoints corresponding to the components and phases in the eq Dataset. A convenience function for
dataplot.

Parameters

• eq (xarray.Dataset) – Result of equilibrium calculation.

• datasets (PickleableTinyDB) – Database of phase equilibria datasets

• ax (matplotlib.Axes) – Default axes used if not specified.

• plot_kwargs (dict) – Keyword arguments to pass to dataplot

Returns

Return type A plot of phase equilibria points as a figure

Examples

>>> from pycalphad import equilibrium, Database, variables as v # doctest: +SKIP
>>> from pycalphad.plot.eqplot import eqplot # doctest: +SKIP
>>> from espei.datasets import load_datasets, recursive_glob # doctest: +SKIP
>>> datasets = load_datasets(recursive_glob('.', '*.json')) # doctest: +SKIP
>>> dbf = Database('my_databases.tdb') # doctest: +SKIP
>>> my_phases = list(dbf.phases.keys()) # doctest: +SKIP
>>> eq = equilibrium(dbf, ['CU', 'MG', 'VA'], my_phases, {v.P: 101325, v.T: (500,
→˓1000, 10), v.X('MG'): (0, 1, 0.01)}) # doctest: +SKIP
>>> ax = eqplot(eq) # doctest: +SKIP
>>> ax = eqdataplot(eq, datasets, ax=ax) # doctest: +SKIP

espei.plot.multiplot(dbf, comps, phases, conds, datasets, eq_kwargs=None, plot_kwargs=None,
data_kwargs=None)

Plot a phase diagram with datapoints described by datasets. This is a wrapper around pycalphad.equilibrium,
pycalphad’s eqplot, and dataplot.

Parameters

• dbf (Database) – pycalphad thermodynamic database containing the relevant parame-
ters.

• comps (list) – Names of components to consider in the calculation.

• phases (list) – Names of phases to consider in the calculation.

• conds (dict) – Maps StateVariables to values and/or iterables of values.

• datasets (PickleableTinyDB) – Database of phase equilibria datasets

• eq_kwargs (dict) – Keyword arguments passed to pycalphad equilibrium()

• plot_kwargs (dict) – Keyword arguments passed to pycalphad eqplot()

• data_kwargs (dict) – Keyword arguments passed to dataplot()

Returns

Return type A phase diagram with phase equilibria data as a figure

15.2. API Documentation 115

ESPEI Documentation, Release 0.7.7

Examples

>>> from pycalphad import Database, variables as v # doctest: +SKIP
>>> from pycalphad.plot.eqplot import eqplot # doctest: +SKIP
>>> from espei.datasets import load_datasets, recursive_glob # doctest: +SKIP
>>> datasets = load_datasets(recursive_glob('.', '*.json')) # doctest: +SKIP
>>> dbf = Database('my_databases.tdb') # doctest: +SKIP
>>> my_phases = list(dbf.phases.keys()) # doctest: +SKIP
>>> multiplot(dbf, ['CU', 'MG', 'VA'], my_phases, {v.P: 101325, v.T: 1000, v.X('MG
→˓'): (0, 1, 0.01)}, datasets) # doctest: +SKIP

espei.plot.plot_parameters(dbf, comps, phase_name, configuration, symmetry, datasets=None,
fig=None, require_data=True)

Plot parameters of interest compared with data in subplots of a single figure

Parameters

• dbf (Database) – pycalphad thermodynamic database containing the relevant parame-
ters.

• comps (list) – Names of components to consider in the calculation.

• phase_name (str) – Name of the considered phase phase

• configuration (tuple) – Sublattice configuration to plot, such as (‘CU’, ‘CU’) or
((‘CU’, ‘MG’), ‘CU’)

• symmetry (list) – List of lists containing indices of symmetric sublattices e.g. [[0, 1],
[2, 3]]

• datasets (PickleableTinyDB) – ESPEI datasets to compare against. If None, noth-
ing is plotted.

• fig (matplotlib.Figure) – Figure to create with axes as subplots.

• require_data (bool) – If True, plot parameters that have data corresponding data.
Defaults to True. Will raise an error for non-interaction configurations.

Returns

Return type None

Examples

>>> # plot the LAVES_C15 (Cu)(Mg) endmember
>>> plot_parameters(dbf, ['CU', 'MG'], 'LAVES_C15', ('CU', 'MG'), symmetry=None,
→˓datasets=datasets) # doctest: +SKIP
>>> # plot the mixing interaction in the first sublattice
>>> plot_parameters(dbf, ['CU', 'MG'], 'LAVES_C15', (('CU', 'MG'), 'MG'),
→˓symmetry=None, datasets=datasets) # doctest: +SKIP

espei.priors module

Classes and functions for retrieving statistical priors for given parameters.

class espei.priors.DistributionParameter(parameter, param_type=’absolute’)
Bases: object

Handle generating absolute, scaling, shifting parameters.

116 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

Examples

>>> dp = DistributionParameter(5.0, 'absolute') # always get back 5
>>> dp.value(1.0) == 5.0
True
>>> dp = DistributionParameter(-2.0, 'relative') # multiply by -2
>>> dp.value(2.0) == -4.0
True
>>> dp = DistributionParameter(-1.0, 'shift_absolute') # subtract 1
>>> dp.value(2.0) == 1.0
True
>>> dp = DistributionParameter(-0.5, 'shift_relative') # subtract 1/2 value
>>> dp.value(2.0) == 1.0
True

SUPPORTED_TYPES = ('absolute', 'relative', 'shift_absolute', 'shift_relative', 'identity')

value(p)
Return the distribution parameter value modified by the parameter and type.

Parameters p (float) – Input parameter to modify.

Returns

Return type float

class espei.priors.PriorSpec(name, **parameters)
Bases: object

Specification template for instantiating priors.

SUPPORTED_PRIORS = ('normal', 'uniform', 'triangular', 'zero')

get_prior(value)
Instantiate a prior as described in the spec

Examples

>>> import numpy as np
>>> from espei.priors import PriorSpec
>>> tri_spec = {'name': 'triangular', 'loc_shift_relative': -0.5, 'scale_
→˓shift_relative': 0.5, 'c': 0.5}
>>> np.isneginf(PriorSpec(**tri_spec).get_prior(10).logpdf(5.1))
False
>>> np.isneginf(PriorSpec(**tri_spec).get_prior(10).logpdf(4.9))
True

espei.priors.build_prior_specs(prior_spec, parameters)
Get priors from given parameters

Parameters

• prior_spec (PriorSpec or dict) – Either a prior spec dict (to instantiate), a Pri-
orSpec, or a list of either. If a list is passed, it must correspond to the parameters.

• parameters (list) – List of parameters that the priors will be instantiated by

Returns

Return type [PriorSpec]

15.2. API Documentation 117

ESPEI Documentation, Release 0.7.7

Examples

>>> s_norm = {'name': 'normal', 'scale_relative': 0.1, 'loc_identity': 1.0}
>>> len(build_prior_specs(s_norm, [10, 100])) == 2
True
>>> s_tri = {'name': 'triangular', 'loc_shift_relative': -0.5, 'scale_shift_
→˓relative': 0.5, 'c': 0.5}
>>> from espei.priors import PriorSpec
>>> len(build_prior_specs([s_norm, PriorSpec(**s_tri)], [10, 100])) == 2
True

class espei.priors.rv_zero(*args, **kwargs)
Bases: object

A simple class that mimics the scipy.stats.rv_continuous object’s logpdf method, always returning zero.

This class mainly exists for backwards compatibility where no prior is specified.

Examples

>>> import numpy as np
>>> rv = rv_zero()
>>> np.isclose(rv.logpdf(-np.inf), 0.0)
True
>>> np.isclose(rv.logpdf(1.0), 0.0)
True
>>> np.isclose(rv.logpdf(0.0), 0.0)
True

logpdf(*args, **kwargs)

espei.refdata module

Create a new Mock object. Mock takes several optional arguments that specify the behaviour of the Mock object:

• spec: This can be either a list of strings or an existing object (a class or instance) that acts as the specification for
the mock object. If you pass in an object then a list of strings is formed by calling dir on the object (excluding
unsupported magic attributes and methods). Accessing any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then mock.__class__ returns the class of the spec object. This
allows mocks to pass isinstance tests.

• spec_set: A stricter variant of spec. If used, attempting to set or get an attribute on the mock that isn’t on the
object passed as spec_set will raise an AttributeError.

• side_effect: A function to be called whenever the Mock is called. See the side_effect attribute. Useful for raising
exceptions or dynamically changing return values. The function is called with the same arguments as the mock,
and unless it returns DEFAULT, the return value of this function is used as the return value.

If side_effect is an iterable then each call to the mock will return the next value from the iterable. If any of the
members of the iterable are exceptions they will be raised instead of returned.

• return_value: The value returned when the mock is called. By default this is a new Mock (created on first
access). See the return_value attribute.

• wraps: Item for the mock object to wrap. If wraps is not None then calling the Mock will pass the call through
to the wrapped object (returning the real result). Attribute access on the mock will return a Mock object that

118 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

wraps the corresponding attribute of the wrapped object (so attempting to access an attribute that doesn’t exist
will raise an AttributeError).

If the mock has an explicit return_value set then calls are not passed to the wrapped object and the return_value
is returned instead.

• name: If the mock has a name then it will be used in the repr of the mock. This can be useful for debugging.
The name is propagated to child mocks.

Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on the mock after it is
created.

espei.rstate module

espei.shadow_functions module

Fast versions of equilibrium and calculate that “override” the equivalent pycalphad functions for very fast performance.

espei.shadow_functions.calculate_(dbf: <Mock name=’mock.Database’
id=’139634640242384’>, species: Sequence[<Mock
name=’mock.variables.Species’ id=’139634639999184’>],
phases: Sequence[str], str_statevar_dict: Dict[str,
<Mock name=’mock.ndarray’ id=’139634639999056’>],
models: Dict[str, <Mock name=’mock.Model’
id=’139634640242512’>], phase_records: Dict[str, <Mock
name=’mock.PhaseRecord’ id=’139634639954960’>],
output: Optional[str] = ’GM’, points: Optional[Dict[str,
<Mock name=’mock.ndarray’ id=’139634639999056’>]]
= None, pdens: Optional[int] = 2000, broadcast:
Optional[bool] = True, fake_points: Optional[bool]
= False) → <Mock name=’mock.LightDataset’
id=’139634639957840’>

Quickly sample phase internal degree of freedom with virtually no overhead.

espei.shadow_functions.equilibrium_(species: Sequence[<Mock
name=’mock.variables.Species’
id=’139634639999184’>], phase_records:
Dict[str, <Mock name=’mock.PhaseRecord’
id=’139634639954960’>], conditions:
Dict[<Mock name=’mock.variables.StateVariable’
id=’139634640000592’>, <Mock name=’mock.ndarray’
id=’139634639999056’>], grid: <Mock
name=’mock.LightDataset’ id=’139634639957840’>)
→ <Mock name=’mock.LightDataset’
id=’139634639957840’>

Perform a fast equilibrium calculation with virtually no overhead.

15.2. API Documentation 119

ESPEI Documentation, Release 0.7.7

espei.shadow_functions.no_op_equilibrium_(_, phase_records: Dict[str,
<Mock name=’mock.PhaseRecord’
id=’139634639954960’>],
conditions: Dict[<Mock
name=’mock.variables.StateVariable’
id=’139634640000592’>,
<Mock name=’mock.ndarray’
id=’139634639999056’>], grid:
<Mock name=’mock.LightDataset’
id=’139634639957840’>) →
<Mock name=’mock.LightDataset’
id=’139634639957840’>

Perform a fast “equilibrium” calculation with virtually no overhead that doesn’t refine the solution or do global
minimization, but just returns the starting point.

Notes

Uses a placeholder first argument for the same signature as _equilibrium, but species are not needed.

espei.shadow_functions.update_phase_record_parameters(phase_records:
Dict[str, <Mock
name=’mock.PhaseRecord’
id=’139634639954960’>],
parameters: <Mock
name=’mock.ndarray’
id=’139634639999056’>)
→ None

espei.sublattice_tools module

Utilities for manipulating sublattice models.

espei.sublattice_tools.canonical_sort_key(x)
Wrap strings in tuples so they’ll sort.

Parameters x (list) – List of strings to sort

Returns tuple of strings that can be sorted

Return type tuple

espei.sublattice_tools.canonicalize(configuration, equivalent_sublattices)
Sort a sequence with symmetry. This routine gives the sequence a deterministic ordering while respecting
symmetry.

Parameters

• configuration ([str]) – Sublattice configuration to sort.

• equivalent_sublattices ({{int}}) – Indices of ‘configuration’ which should be
equivalent by symmetry, i.e., [[0, 4], [1, 2, 3]] means permuting elements 0 and 4, or 1, 2
and 3, respectively, has no effect on the equivalence of the sequence.

Returns sorted tuple that has been canonicalized.

Return type str

espei.sublattice_tools.endmembers_from_interaction(configuration)
For a given configuration with possible interactions, return all the endmembers

120 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

espei.sublattice_tools.generate_endmembers(sublattice_model, symmetry=None)
Return all the unique endmembers by symmetry for a given sublattice model.

Parameters

• sublattice_model (list of lists) – General sublattice model, with each sublat-
tice as a sublist.

• symmetry (list of lists, optional) – List of lists containing symmetrically
equivalent sublattice indices. If None (default), all endmembers will be returned.

Returns List of endmember tuples

Return type list

Examples

>>> subl_model = [['A', 'B'], ['A','B']]
>>> generate_endmembers(subl_model) # four endmembers
[('A', 'A'), ('A', 'B'), ('B', 'A'), ('B', 'B')]
>>> # three endmembers, ('A', 'B') is equivalent to ('B', 'A') by symmetry.
>>> generate_endmembers(subl_model, [[0, 1]]) # the first and second sublattices
→˓are symmetrically equivalent.
[('A', 'A'), ('A', 'B'), ('B', 'B')]

espei.sublattice_tools.generate_interactions(endmembers, order, symmetry)
Returns a list of sorted interactions of a certain order

Parameters

• endmembers (list) – List of tuples/strings of all endmembers (including symmetrically
equivalent)

• order (int) – Highest expected interaction order, e.g. ternary interactions should be 3

• symmetry (list of lists) – List of lists containing symmetrically equivalent sublat-
tice indices, e.g. [[0, 1], [2, 3]] means that sublattices 0 and 1 are equivalent and sublattices
2 and 3 are also equivalent.

Returns List of interaction tuples, e.g. [(‘A’, (‘A’, ‘B’))]

Return type list

espei.sublattice_tools.generate_symmetric_group(configuration, symmetry)
For a particular configuration and list of sublattices with symmetry, generate all the symmetrically equivalent
configurations.

Parameters

• configuration (tuple) – Tuple of a sublattice configuration.

• symmetry (list of lists) – List of lists containing symmetrically equivalent sublat-
tice indices, e.g. [[0, 1], [2, 3]] means that sublattices 0 and 1 are equivalent and sublattices
2 and 3 are also equivalent.

Returns Tuple of configuration tuples that are all symmetrically equivalent.

Return type tuple

espei.sublattice_tools.interaction_test(configuration, order=None)
Returns True if the configuration has an interaction

15.2. API Documentation 121

ESPEI Documentation, Release 0.7.7

Parameters order (int, optional) – Specific order to check for. E.g. a value of 3 checks for
ternary interactions

Returns True if there is an interaction.

Return type bool

Examples

>>> configuration = [['A'], ['A','B']]
>>> interaction_test(configuration)
True
>>> interaction_test(configuration, order=2)
True
>>> interaction_test(configuration, order=3)
False

espei.sublattice_tools.recursive_tuplify(x)
Recursively convert a nested list to a tuple

espei.sublattice_tools.sorted_interactions(interactions, max_interaction_order, symme-
try)

Return interactions sorted by interaction order

Parameters

• interactions (list) – List of tuples/strings of potential interactions

• max_interaction_order (int) – Highest expected interaction order, e.g. ternary
interactions should be 3

• symmetry (list of lists) – List of lists containing symmetrically equivalent sublat-
tice indices, e.g. [[0, 1], [2, 3]] means that sublattices 0 and 1 are equivalent and sublattices
2 and 3 are also equivalent.

Returns Sorted list of interactions

Return type list

Notes

Sort by number of full interactions, e.g. (A:A,B) is before (A,B:A,B) The goal is to return a sort key that can
sort through multiple interaction orders, e.g. (A:A,B,C), which should be before (A,B:A,B,C), which should be
before (A,B,C:A,B,C).

espei.sublattice_tools.tuplify(x)
Convert a list to a tuple, or wrap an object in a tuple if it’s not a list or tuple.

espei.utils module

Utilities for ESPEI

Classes and functions defined here should have some reuse potential.

espei.utils.add_bibtex_to_bib_database(bibtex, bib_db=None)
Add entries from a BibTeX file to the bibliography database

Parameters

122 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

• bibtex (str) – Either a multiline string, a path, or a file-like object of a BibTeX file

• bib_db (PickleableTinyDB) – Database to put the BibTeX entries. Defaults to a
module-level default database

Returns

Return type The modified bibliographic database

espei.utils.bib_marker_map(bib_keys, markers=None)
Return a dict with reference keys and marker dicts

Parameters

• bib_keys –

• markers (list) – List of 2-tuples of (‘fillstyle’, ‘marker’) e.g. [(‘top’, ‘o’), (‘full’, ‘s’)].
Defaults to cycling through the filled markers, the different fill styles.

Returns Dictionary with bib_keys as keys, dict values of formatted strings and marker dicts

Return type dict

Examples

>>> mm = bib_marker_map(['otis2016', 'bocklund2018'])
>>> mm == {'bocklund2018': {'formatted': 'bocklund2018', 'markers': {'fillstyle':
→˓'none', 'marker': 'o'}}, 'otis2016': {'formatted': 'otis2016', 'markers': {
→˓'fillstyle': 'none', 'marker': 'v'}}}
True

espei.utils.build_sitefractions(phase_name, sublattice_configurations, sublat-
tice_occupancies)

Convert nested lists of sublattice configurations and occupancies to a list of dictionaries. The dictionaries map
SiteFraction symbols to occupancy values. Note that zero occupancy site fractions will need to be added sepa-
rately since the total degrees of freedom aren’t known in this function.

Parameters

• phase_name (str) – Name of the phase

• sublattice_configurations ([[str]]) – sublattice configuration

• sublattice_occupancies ([[float]]) – occupancy of each sublattice

Returns a list of site fractions over sublattices

Return type [[float]]

espei.utils.database_symbols_to_fit(dbf, symbol_regex=’^V[V]?([0-9]+)$’)
Return names of the symbols to fit that match the regular expression

Parameters

• dbf (Database) – pycalphad Database

• symbol_regex (str) – Regular expression of the fitting symbols. Defaults to V or VV
followed by one or more numbers.

Returns Context dictionary for different methods of calculation the error.

Return type dict

espei.utils.flexible_open_string(obj)
Return the string of a an object that is either file-like, a file path, or the raw string.

15.2. API Documentation 123

ESPEI Documentation, Release 0.7.7

Parameters obj (string-like or file-like) – Either a multiline string, a path, or a file-
like object

Returns

Return type str

espei.utils.formatted_constituent_array(constituent_array)
Given a constituent array of Species, return the classic CALPHAD-style interaction.

Parameters constituent_array (list) – List of sublattices, which are lists of Species in that
sublattice

Returns String of the constituent array formatted in the classic CALPHAD style

Return type str

Examples

>>> from pycalphad import variables as v
>>> const_array = [[v.Species('CU'), v.Species('MG')], [v.Species('MG')]]
>>> formatted_constituent_array(const_array)
'CU,MG:MG'

espei.utils.formatted_parameter(dbf, symbol, unique=True)
Get the deconstructed pretty parts of the parameter/term a symbol belongs to in a Database.

Parameters

• dbf (pycalphad.Database) –

• symbol (string or sympy.Symbol) – Symbol in the Database to get the parameter
for.

• unique (bool) – If True, will raise if more than one parameter containing the symbol is
found.

Returns A named tuple with the following attributes: phase_name, interaction, symbol,
term, parameter_type or term_symbol (which is just the Symbol * temperature term)

Return type FormattedParameter

espei.utils.get_dask_config_paths()
Return a list of configuration file paths for dask.

The last path in the list has the highest precedence.

Returns

Return type list

Examples

>>> config_files = get_dask_config_paths()
>>> len(config_files) >= 1
True

espei.utils.optimal_parameters(trace_array, lnprob_array, kth=0)
Return the optimal parameters in the trace based on the highest likelihood. If kth is specified, return the kth set
of unique optimal parameters.

124 Chapter 15. Advanced Schedulers

ESPEI Documentation, Release 0.7.7

Parameters

• trace_array (ndarray) – Array of shape (number of chains, iterations, number of
parameters)

• lnprob_array (ndarray) – Array of shape (number of chains, iterations)

• kth (int) – Zero-indexed optimum. 0 (the default) is the most optimal solution. 1 is the
second most optimal, etc.. Only unique solutions will be returned.

Returns

Return type Array of optimal parameters

Notes

It is ok if the calculation did not finish and the arrays are padded with zeros. The number of chains and iterations
in the trace and lnprob arrays must match.

Examples

>>> from espei.utils import optimal_parameters
>>> trace = np.array([[[1, 0], [2, 0], [3, 0], [0, 0]], [[0, 2], [0, 4], [0, 6],
→˓[0, 0]]]) # 3 iterations of 4 allocated
>>> lnprob = np.array([[-6, -4, -2, 0], [-3, -1, -2, 0]])
>>> np.all(np.isclose(optimal_parameters(trace, lnprob), np.array([0, 4])))
True

espei.utils.parameter_term(expression, symbol)
Determine the term, e.g. T*log(T) that belongs to the symbol in expression

Parameters

• expression –

• symbol –

espei.utils.popget(d, key, default=None)
Get the key from the dict, returning the default if not found.

Parameters

• d (dict) – Dictionary to get key from.

• key (object) – Key to get from the dictionary.

• default (object) – Default to return if key is not found in dictionary.

Returns

Return type object

Examples

>>> d = {'ABC': 5.0}
>>> popget(d, 'ZPF', 1.0) == 1.0
True
>>> popget(d, 'ABC', 1.0) == 5.0
True

15.2. API Documentation 125

ESPEI Documentation, Release 0.7.7

espei.utils.sigfigs(x, n)
Round x to n significant digits

espei.utils.unpack_piecewise(x)

espei.validation module

Module contents

ESPEI

126 Chapter 15. Advanced Schedulers

Part V

Developer

127

CHAPTER 16

Contributing to ESPEI

16.1 Contributing to ESPEI

This is the place to start as a new ESPEI contributor.

The next sections lay out the basics of getting an ESPEI development set up and the development standards. Then the
Software design sections walk through the key parts of the codebase.

16.1.1 Installing in develop mode

It is suggested to use ESPEI in development mode if you will be contributing features to the source code. As usual,
you should install ESPEI into a virtual environment.

All of the dependencies can be installed either by conda or pip.

Then clone the source and install ESPEI in development mode with pip:

git clone https://github.com/PhasesResearchLab/espei.git
pip install --editable espei

Even if you use Anaconda, it is recommended that you use either pip or python setup.py develop to install
ESPEI in development mode. This is because the conda-build tool, which would typically be used for this, is not
well maintained at the time of writing.

Develop mode on Windows

Because of compiler issues, ESPEI’s dependencies are challenging to install on Windows. As mentioned above, ideally
the conda-build tool could be used, but it is not able to be used. Therefore the recommended way to install ESPEI
is to

1. Install ESPEI into a virtual environment from Anaconda, pulling all of the packages with it

2. Remove ESPEI without removing the other packages

129

ESPEI Documentation, Release 0.7.7

3. Install ESPEI in develop mode with pip or setuptools from the source repository

The steps to do this on the command line are as follows

conda create -n espei_dev espei
activate espei_dev
conda remove --force espei
git clone https://github.com/PhasesResearchLab/espei.git
pip install --editable espei

16.1.2 Tests

Even though much of ESPEI is devoted to being a multi-core, stochastic user tool, we strive to test all logic and
functionality. We are continuously maintaining tests and writing tests for previously untested code.

As a general rule, any time you write a new function or modify an existing function you should write or maintain a
test for that function.

ESPEI uses pytest as a test runner.

Some tips for testing:

• Ideally you would practicing test driven development by writing tests of your intended results before you write
the function.

• If possible, keep the tests small and fast. If you do have a long running tests (longer than ~15 second run time)
mark the test with the @pytest.mark.slow decorator.

• See the NumPy/SciPy testing guidelines for more tips

Running Tests

If you will be developing in ESPEI, it is likely that you’ll want to run the test suite or build the documentation.
The tests require the addition of the pytest, nose, and mock packages, while building the docs requires sphinx and
sphinx_rtd_theme. These can be installed by running

conda install mock pytest nose sphinx sphinx_rtd_theme

The tests can be run from the root directory of the cloned repository:

pytest --doctest-modules tests espei

16.1.3 Style

Code style

For most naming and style, follow PEP8. One exception to PEP8 is regarding the line length, which we suggest a 120
character maximum, but may be longer within reason.

Code documentation

ESPEI uses the NumPy documentation style. All functions and classes should be documented with at least a descrip-
tion, parameters, and return values, if applicable.

130 Chapter 16. Contributing to ESPEI

https://pytest.org
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://www.python.org/dev/peps/pep-0008/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

ESPEI Documentation, Release 0.7.7

Using Examples in the documentation is especially encouraged for utilities that are likely to be run by users. See
espei.plot.multiplot() for an example.

If you add any new external (non-ESPEI) imports in any code, they must be added to the MOCK_MODULES list in
docs/conf.py.

Web documention

Documentation on ESPEI is split into user tutorials, reference and developer documentation.

• Tutorials are resources for users new to ESPEI or new to certain features of ESPEI to be guided through typical
actions.

• Reference pages should be concise articles that explain how to complete specific goals for users who know what
they want to accomplish.

• Developer documentation should describe what should be considered when contributing source code back to
ESPEI.

You can check changes you make to the documentation by going to the documentation folder in the root
repository cd docs/. Running the command make html && cd build/html && python3 -m http.
server && cd ../.. && make clean from that folder will build the docs and run them on a local HTTP
server. You can see the documentation when the server is running by visting the URL at the end of the output,
usually localhost port 8000 <http://0.0.0.0:8000>``_. When you are finished, type
``Ctrl-C to stop the server and the command will clean up the build for you.

Make sure to fix any warnings that come up if you are adding documentation.

Building Documentation

The docs can be built by running the docs/Makefile (or docs/make.bat on Windows). Then Python can be used to serve
the html files in the _build directory and you can visit http://localhost:8000 in your broswer to see the built
documentation.

For Unix systems:

cd docs
make html
cd _build/html
python -m http.server

Windows:

cd docs
make.bat html
cd _build\html
python -m http.server

16.1.4 Logging

Since ESPEI is intended to be run by users, we must provide useful feedback on how their runs are progressing. ESPEI
uses the logging module to allow control over verbosity of the output.

There are 5 different logging levels provided by Python. They should be used as follows:

16.1. Contributing to ESPEI 131

ESPEI Documentation, Release 0.7.7

Critical or Error (logging.critical or logging.error) Never use these. These log levels would only be
used when there is an unrecoverable error that requires the run to be stopped. In that case, it is better to raise
an appropriate error instead.

Warning (logging.warning) Warnings are best used when we are able to recover from something bad that has
happened. The warning should inform the user about potentially incorrect results or let them know about some-
thing they have the potential to fix. Again, anything unrecoverable should not be logged and should instead be
raised with a good error message.

Info (logging.info) Info logging should report on the progress of the program. Usually info should give feedback
on milestones of a run or on actions that were taken as a result of a user setting. An example of a milestone is
starting and finishing parameter generation. An example of an action taken as a result of a user setting is the
logging of the number of chains in an mcmc run.

Debug (logging.debug) Debugging is the lowest level of logging we provide in ESPEI. Debug messages should
consist of possibly useful information that is beyond the user’s direct control. Examples are the values of initial
parameters, progress of checking datasets and building phase models, and the acceptance ratios of MCMC
iterations.

132 Chapter 16. Contributing to ESPEI

CHAPTER 17

Software design

17.1 Software design

The following sections elaborate on the design principles on the software side. The goal is to make it clear how
different modules in ESPEI fit together and where to find specific functionality to override or improve.

ESPEI provides tools to

1. Parameterize CALPHAD models by optimizing the compromise between model accuracy and complexity. We
typically call this parameter generation or model selection.

2. Fit parameterized CALPHAD models to thermochemical and phase boundary data or other custom data with
uncertainty quantification via Markov chain Monte Carlo

17.1.1 API

ESPEI has two levels of API that users should expect to interact with:

1. Input from YAML files on the command line (via espei --input <input_file> or by Python via the
espei.espei_script.run_espei function

2. Work directly with the Python functions for parameter selection espei.paramselect.
generate_parameters and MCMC espei.mcmc.mcmc_fit

YAML files are the recommended way to use ESPEI and should have a way to express most if not all of the options
that the Python functions support. The schema for YAML files is located in the root of the ESPEI directory as
input-schema.yaml and is validated in the espei_script.py module by the Cerberus package.

17.1.2 Module Hierarchy

• espei_script.py is the main entry point for the YAML input API.

• optimzers is a package that defines an OptimizerBase class for writing optimizers. EmceeOptimzer
and ScipyOptimizer subclasses this.

133

http://docs.python-cerberus.org/en/stable/

ESPEI Documentation, Release 0.7.7

• error_functions is a package with modules for each type of likelihood function.

• priors.py defines priors to be used in MCMC, see Specifying Priors.

• paramselect.py is where parameter generation happens.

• mcmc.py creates the likelihood function and runs MCMC. Deprecated. In the future, users should use
EmceeOptimizer.

• parameter_selection is a package with core pieces of parameter selection.

• utils.py are utilities with reuse potential across several parts of ESPEI.

• plot.py holds plotting functions.

• datasets.py manages validating and loading datasets into a TinyDB in memory database.

• core_utils.py are legacy utility functions that should be refactored out to be closer to individual modules
and packages where they are used.

• shadow_functions.py are core internals that are designed to be fast, minimal versions of pycalphad’s
calculate and equilibrium functions.

17.1.3 Parameter selection

Parameter selection goes through the generate_parameters function in the espei.paramselect module.
The goal of parameter selection is go through each phase (one at a time) and fit a CALPHAD model to the data.

For each phase, the endmembers are fit first, followed by binary and ternary interactions. For each individual endmem-
ber or interaction to fit, a series of candidate models are generated that have increasing complexity in both temperature
and interaction order (an L0 excess parameter, L0 and L1, . . .).

Each model is then fit by espei.parameter_selection.selection.fit_model, which currently uses a
simple pseudo-inverse linear model from scikit-learn. Then the tradeoff between the goodness of fit and the model
complexity is scored by the AICc in espei.parameter_selection.selection.score_model. The op-
timal scoring model is accepted as the model with the fit model parameters set as degrees of freedom for the MCMC
step.

The main principle is that ESPEI transforms the data and candidate models to vectors and matricies that fit a typical
machine learning type problem of 𝐴𝑥 = 𝑏. Extending ESPEI to use different or custom models in the current scheme
basically comes down to formulating candidate models in terms of this type of problem. The main ways to improve
on the fitting or scoring methods used in parameter selection is to override the fit and score functions.

Currently the capabilities for providing custom models or contributions (e.g. magnetic data) in the form of generic
pycalphad Model objects are limited. This is also true for custom types of data that one would use in fitting a custom
model.

17.1.4 MCMC optimization and uncertainty quantification

Most of the Markov chain Monte Carlo optimization and uncertainty quantification happen in the espei.
optimizers.opt_mcmc.py module through the EmceeOptimizer class.

EmceeOptimizer is a subclass of OptimizerBase, which defines an interface for performing opitmizations of
parameters. It defines several methods:

fit takes a list of symbol names and datasets to fit to. It calls an _fit method that returns an OptNode repre-
senting the parameters that result from the fit to the datasets. fit evaluates the parameters by calling the objective
function on some parameters (an array of values) and a context in the predict method, which is overridden by
OptimizerBase subclasses. There is also an interface for storing a history of successive fits to different parameter
sets, using the commit method, which will store the history of the calls to fit in a graph of fitting steps. The idea

134 Chapter 17. Software design

ESPEI Documentation, Release 0.7.7

is that users can generate a graph of fitting results and go back to specific points on the graph and test fitting different
sets of parameters or different datasets, creating a unique history of committed parameter sets and optimization paths,
similar to a history in version control software like git.

The main reason ESPEI’s parameter selection and MCMC routines are split up is that custom Models or existing TDB
files can be provided and fit. In other words, if you are using a model that doesn’t need parameter selection or is for a
property that is not Gibbs energy, MCMC can fit it with uncertainty quantification.

The general process is

1. Take a database with degrees of freedom as database symbols named VV####, where #### is a number, e.g.
0001. The symbols correspond to FUNCTION in the TDB files.

2. Initialize those degrees of freedom to a starting distribution for ensemble MCMC. The starting distribution
is controlled by the EmceeOptimizer.initialize_new_chains function, which currently supports
initializing the parameters to a Gaussian ball.

3. Use the emcee package to run ensemble MCMC

ESPEI’s MCMC is quite flexible for customization. To fit a custom model, it just needs to be read by pycalphad and
have correctly named degrees of freedom (VV####).

To fit an existing or custom model to new types of data, just write a function that takes in datasets and the parameters
that are required to calculate the values (e.g. pycalphad Database, components, phases, . . .) and returns the error. Then
override the EmceeOptimizer.predict function to include your custom error contribution. There are examples
of these functions espei.error_functions that ESPEI uses by default.

Modifications to how parameters are initialized can be made by subclassing EmceeOptimizer.
initialize_new_chains. Many other modifications can be made by subclassing EmceeOptimizer.

17.1. Software design 135

http://dfm.io/emcee/current/

ESPEI Documentation, Release 0.7.7

136 Chapter 17. Software design

Part VI

Appendix

137

CHAPTER 18

Appendices

18.1 Getting Help

For help on installing and using ESPEI, please join the PhasesResearchLab/ESPEI Gitter room.

Bugs and software issues should be reported on GitHub.

18.2 License

ESPEI is MIT licensed.

The MIT License (MIT)

Copyright (c) 2015-2018 Richard Otis
Copyright (c) 2017-2018 Brandon Bocklund
Copyright (c) 2018-2019 Materials Genome Foundation

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

(continues on next page)

139

https://gitter.im/PhasesResearchLab/ESPEI
https://github.com/PhasesResearchLab/ESPEI/issues

ESPEI Documentation, Release 0.7.7

(continued from previous page)

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

18.3 Citing ESPEI

If you use ESPEI for work presented in a publication, we ask that you cite the following publication:

B. Bocklund, R. Otis, A. Egorov, A. Obaied, I. Roslyakova, Z.-K. Liu, ESPEI for efficient thermodynamic database
development, modification, and uncertainty quantification: application to Cu–Mg, MRS Commun. (2019) 1–10.
doi:10.1557/mrc.2019.59.

@article{Bocklund2019ESPEI,
archivePrefix = {arXiv},
arxivId = {1902.01269},
author = {Bocklund, Brandon and Otis, Richard and Egorov, Aleksei and Obaied,

→˓ Abdulmonem and Roslyakova, Irina and Liu, Zi-Kui},
doi = {10.1557/mrc.2019.59},
eprint = {1902.01269},
issn = {2159-6859},
journal = {MRS Communications},
month = {jun},
pages = {1--10},
title = {{ESPEI for efficient thermodynamic database development,

→˓modification, and uncertainty quantification: application to Cu-Mg}},
year = {2019}

}

140 Chapter 18. Appendices

https://doi.org/10.1557/mrc.2019.59

Python Module Index

e
espei, 126
espei.analysis, 106
espei.citing, 106
espei.core_utils, 106
espei.datasets, 108
espei.error_functions, 96
espei.error_functions.activity_error,

85
espei.error_functions.context, 87
espei.error_functions.equilibrium_thermochemical_error,

87
espei.error_functions.non_equilibrium_thermochemical_error,

92
espei.error_functions.zpf_error, 94
espei.espei_script, 110
espei.mcmc, 111
espei.optimizers, 100
espei.optimizers.graph, 97
espei.optimizers.opt_base, 98
espei.optimizers.opt_mcmc, 98
espei.optimizers.opt_scipy, 100
espei.optimizers.utils, 100
espei.parameter_selection, 106
espei.parameter_selection.model_building,

100
espei.parameter_selection.redlich_kister,

102
espei.parameter_selection.selection, 103
espei.parameter_selection.ternary_parameters,

104
espei.parameter_selection.utils, 104
espei.paramselect, 112
espei.plot, 114
espei.priors, 116
espei.refdata, 118
espei.rstate, 119
espei.shadow_functions, 119
espei.sublattice_tools, 120

espei.utils, 122
espei.validation, 126

141

ESPEI Documentation, Release 0.7.7

142 Python Module Index

Index

A
add_bibtex_to_bib_database() (in module es-

pei.utils), 122
add_ideal_exclusions() (in module es-

pei.datasets), 108
add_node() (espei.optimizers.graph.OptGraph

method), 97
apply_tags() (in module espei.datasets), 109

B
bib_marker_map() (in module espei.utils), 123
build_candidate_models() (in module es-

pei.parameter_selection.model_building),
100

build_eqpropdata() (in module es-
pei.error_functions.equilibrium_thermochemical_error),
88

build_feature_sets() (in module es-
pei.parameter_selection.model_building),
101

build_prior_specs() (in module espei.priors),
117

build_sitefractions() (in module espei.utils),
123

build_ternary_feature_matrix()
(in module es-
pei.parameter_selection.ternary_parameters),
104

C
calc_interaction_product() (in module es-

pei.parameter_selection.redlich_kister), 102
calc_prop_differences() (in module es-

pei.error_functions.equilibrium_thermochemical_error),
89

calc_site_fraction_product() (in module es-
pei.parameter_selection.redlich_kister), 102

calculate_() (in module espei.shadow_functions),
119

calculate_activity_error() (in module es-
pei.error_functions.activity_error), 85

calculate_equilibrium_thermochemical_probability()
(in module es-
pei.error_functions.equilibrium_thermochemical_error),
90

calculate_non_equilibrium_thermochemical_probability()
(in module es-
pei.error_functions.non_equilibrium_thermochemical_error),
92

calculate_points_array() (in module es-
pei.error_functions.non_equilibrium_thermochemical_error),
92

calculate_zpf_error() (in module es-
pei.error_functions.zpf_error), 94

canonical_sort_key() (in module es-
pei.sublattice_tools), 120

canonicalize() (in module espei.sublattice_tools),
120

check_dataset() (in module espei.datasets), 109
chempot_error() (in module es-

pei.error_functions.activity_error), 86
children (espei.optimizers.graph.OptNode attribute),

97
clean_dataset() (in module espei.datasets), 110
commit() (espei.optimizers.opt_base.OptimizerBase

method), 98
comp_conds (espei.error_functions.zpf_error.PhaseRegion

attribute), 94
composition_conds (es-

pei.error_functions.equilibrium_thermochemical_error.EqPropData
attribute), 88

D
database_symbols_to_fit() (in module es-

pei.utils), 123
dataplot() (in module espei.plot), 114
DatasetError, 108
datasets (espei.optimizers.graph.OptNode attribute),

97

143

ESPEI Documentation, Release 0.7.7

dbf (espei.error_functions.equilibrium_thermochemical_error.EqPropData
attribute), 88

dbf (espei.error_functions.zpf_error.PhaseRegion
attribute), 94

discard() (espei.optimizers.opt_base.OptimizerBase
method), 98

DistributionParameter (class in espei.priors),
116

do_sampling() (es-
pei.optimizers.opt_mcmc.EmceeOptimizer
method), 99

driving_force_to_hyperplane() (in module
espei.error_functions.zpf_error), 95

E
EmceeOptimizer (class in es-

pei.optimizers.opt_mcmc), 98
endmembers_from_interaction() (in module

espei.sublattice_tools), 120
eqdataplot() (in module espei.plot), 114
EqPropData (class in es-

pei.error_functions.equilibrium_thermochemical_error),
87

equilibrium_() (in module es-
pei.shadow_functions), 119

espei (module), 126
espei.analysis (module), 106
espei.citing (module), 106
espei.core_utils (module), 106
espei.datasets (module), 108
espei.error_functions (module), 96
espei.error_functions.activity_error

(module), 85
espei.error_functions.context (module), 87
espei.error_functions.equilibrium_thermochemical_error

(module), 87
espei.error_functions.non_equilibrium_thermochemical_error

(module), 92
espei.error_functions.zpf_error (module),

94
espei.espei_script (module), 110
espei.mcmc (module), 111
espei.optimizers (module), 100
espei.optimizers.graph (module), 97
espei.optimizers.opt_base (module), 98
espei.optimizers.opt_mcmc (module), 98
espei.optimizers.opt_scipy (module), 100
espei.optimizers.utils (module), 100
espei.parameter_selection (module), 106
espei.parameter_selection.model_building

(module), 100
espei.parameter_selection.redlich_kister

(module), 102

espei.parameter_selection.selection
(module), 103

espei.parameter_selection.ternary_parameters
(module), 104

espei.parameter_selection.utils (module),
104

espei.paramselect (module), 112
espei.plot (module), 114
espei.priors (module), 116
espei.refdata (module), 118
espei.rstate (module), 119
espei.shadow_functions (module), 119
espei.sublattice_tools (module), 120
espei.utils (module), 122
espei.validation (module), 126
estimate_hyperplane() (in module es-

pei.error_functions.zpf_error), 95
extract_conditions() (in module es-

pei.error_functions.zpf_error), 96
extract_phases_comps() (in module es-

pei.error_functions.zpf_error), 96

F
fit() (espei.optimizers.opt_base.OptimizerBase

method), 98
fit_formation_energy() (in module es-

pei.paramselect), 112
fit_model() (in module es-

pei.parameter_selection.selection), 103
fit_ternary_interactions() (in module es-

pei.paramselect), 112
flexible_open_string() (in module espei.utils),

123
formatted_constituent_array() (in module

espei.utils), 124
formatted_parameter() (in module espei.utils),

124

G
generate_endmembers() (in module es-

pei.sublattice_tools), 120
generate_interactions() (in module es-

pei.sublattice_tools), 121
generate_parameters() (in module es-

pei.paramselect), 113
generate_symmetric_group() (in module es-

pei.sublattice_tools), 121
get_dask_config_paths() (in module es-

pei.espei_script), 110
get_dask_config_paths() (in module es-

pei.utils), 124
get_data() (in module espei.core_utils), 106
get_data_quantities() (in module es-

pei.parameter_selection.utils), 104

144 Index

ESPEI Documentation, Release 0.7.7

get_equilibrium_thermochemical_data()
(in module es-
pei.error_functions.equilibrium_thermochemical_error),
91

get_next_symbol() (in module espei.paramselect),
113

get_path_to_node() (es-
pei.optimizers.graph.OptGraph static method),
97

get_prior() (espei.priors.PriorSpec method), 117
get_priors() (espei.optimizers.opt_mcmc.EmceeOptimizer

static method), 99
get_prop_data() (in module espei.core_utils), 107
get_prop_samples() (in module es-

pei.error_functions.non_equilibrium_thermochemical_error),
93

get_run_settings() (in module es-
pei.espei_script), 110

get_samples() (in module espei.core_utils), 107
get_thermochemical_data() (in module es-

pei.error_functions.non_equilibrium_thermochemical_error),
93

get_transformation_dict() (es-
pei.optimizers.graph.OptGraph method),
97

get_weights() (in module espei.core_utils), 107
get_zpf_data() (in module es-

pei.error_functions.zpf_error), 96

I
id (espei.optimizers.graph.OptNode attribute), 97
initialize_chains_from_trace() (es-

pei.optimizers.opt_mcmc.EmceeOptimizer
static method), 99

initialize_new_chains() (es-
pei.optimizers.opt_mcmc.EmceeOptimizer
static method), 99

interaction_test() (in module es-
pei.sublattice_tools), 121

L
load_datasets() (in module espei.datasets), 110
log_version_info() (in module es-

pei.espei_script), 110
logpdf() (espei.priors.rv_zero method), 118

M
main() (in module espei.espei_script), 110
make_successive() (in module es-

pei.parameter_selection.model_building),
101

mcmc_fit() (in module espei.mcmc), 111
models (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88

models (espei.error_functions.zpf_error.PhaseRegion
attribute), 94

multiplot() (in module espei.plot), 115

N
no_op_equilibrium_() (in module es-

pei.shadow_functions), 119

O
OptGraph (class in espei.optimizers.graph), 97
optimal_parameters() (in module espei.utils), 124
OptimizerBase (class in espei.optimizers.opt_base),

98
OptimizerError, 100
OptNode (class in espei.optimizers.graph), 97
output (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88

P
parameter_term() (in module espei.utils), 125
parameters (espei.optimizers.graph.OptNode at-

tribute), 97
params_keys (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88
parent (espei.optimizers.graph.OptNode attribute), 97
phase_fit() (in module espei.paramselect), 113
phase_flags (espei.error_functions.zpf_error.PhaseRegion

attribute), 94
phase_records (es-

pei.error_functions.equilibrium_thermochemical_error.EqPropData
attribute), 88

phase_records (es-
pei.error_functions.zpf_error.PhaseRegion
attribute), 94

PhaseRegion (class in es-
pei.error_functions.zpf_error), 94

phases (espei.error_functions.equilibrium_thermochemical_error.EqPropData
attribute), 88

phases (espei.error_functions.zpf_error.PhaseRegion
attribute), 94

plot_parameters() (in module espei.plot), 116
popget() (in module espei.utils), 125
potential_conds (es-

pei.error_functions.equilibrium_thermochemical_error.EqPropData
attribute), 88

potential_conds (es-
pei.error_functions.zpf_error.PhaseRegion
attribute), 94

predict() (espei.optimizers.opt_base.OptimizerBase
static method), 98

predict() (espei.optimizers.opt_mcmc.EmceeOptimizer
static method), 99

predict() (espei.optimizers.opt_scipy.SciPyOptimizer
static method), 100

Index 145

ESPEI Documentation, Release 0.7.7

PriorSpec (class in espei.priors), 117
probfile (espei.optimizers.opt_mcmc.EmceeOptimizer

attribute), 98

R
ravel_conditions() (in module espei.core_utils),

107
ravel_zpf_values() (in module espei.core_utils),

108
recursive_glob() (in module espei.datasets), 110
recursive_map() (in module espei.core_utils), 108
recursive_tuplify() (in module es-

pei.sublattice_tools), 122
reference (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88
region_phases (es-

pei.error_functions.zpf_error.PhaseRegion
attribute), 94

reset_database() (es-
pei.optimizers.opt_base.OptimizerBase
method), 98

run_espei() (in module espei.espei_script), 111
rv_zero (class in espei.priors), 118

S
samples (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88
save_interval (es-

pei.optimizers.opt_mcmc.EmceeOptimizer
attribute), 98

save_sampler_state() (es-
pei.optimizers.opt_mcmc.EmceeOptimizer
method), 99

scheduler (espei.optimizers.opt_mcmc.EmceeOptimizer
attribute), 98

SciPyOptimizer (class in es-
pei.optimizers.opt_scipy), 100

score_model() (in module es-
pei.parameter_selection.selection), 103

select_model() (in module es-
pei.parameter_selection.selection), 104

setup_context() (in module es-
pei.error_functions.context), 87

shift_reference_state() (in module es-
pei.parameter_selection.utils), 105

sigfigs() (in module espei.utils), 125
sorted_interactions() (in module es-

pei.sublattice_tools), 122
species (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88
species (espei.error_functions.zpf_error.PhaseRegion

attribute), 94
SUPPORTED_PRIORS (espei.priors.PriorSpec at-

tribute), 117

SUPPORTED_TYPES (es-
pei.priors.DistributionParameter attribute),
117

symmetry_filter() (in module espei.core_utils),
108

T
target_chempots_from_activity() (in mod-

ule espei.error_functions.activity_error), 86
tracefile (espei.optimizers.opt_mcmc.EmceeOptimizer

attribute), 98
truncate_arrays() (in module espei.analysis), 106
tuplify() (in module espei.sublattice_tools), 122

U
unpack_piecewise() (in module espei.utils), 126
update_phase_record_parameters() (in mod-

ule espei.shadow_functions), 120

V
value() (espei.priors.DistributionParameter method),

117

W
weight (espei.error_functions.equilibrium_thermochemical_error.EqPropData

attribute), 88

146 Index

	I Introduction
	Installation
	Quickstart
	References
	What is ESPEI?
	What ESPEI can do?
	Goals
	History
	Change log

	II Tutorials
	Cu-Mg example

	III How-to
	YAML input files
	Specifying Priors
	Making ESPEI datasets
	Recipes
	Use a custom unary reference state

	IV Reference
	Advanced Schedulers

	V Developer
	Contributing to ESPEI
	Software design

	VI Appendix
	Appendices
	Python Module Index
	Index

