generate_parameters
generate_parameters(phase_models, datasets, ref_state, excess_model, ridge_alpha=None, aicc_penalty_factor=None, dbf=None, fitting_description=gibbs_energy_fitting_description)
Generate parameters from given phase models and datasets
Parameters
Name | Type | Description | Default |
---|---|---|---|
phase_models |
dict | Dictionary of components and phases to fit. | required |
datasets |
PickleableTinyDB | database of single- and multi-phase to fit. | required |
ref_state |
str | String of the reference data to use, e.g. ‘SGTE91’ or ‘SR2016’ | required |
excess_model |
str | String of the type of excess model to fit to, e.g. ‘linear’ | required |
ridge_alpha |
float | Value of the :math:\alpha hyperparameter used in ridge regression. Defaults to None, which falls back to ordinary least squares regression. For now, the parameter is applied to all features. |
None |
aicc_penalty_factor |
dict | Map of phase name to feature to a multiplication factor for the AICc’s parameter penalty. | None |
dbf |
Database | Initial pycalphad Database that can have parameters that would not be fit by ESPEI | None |
fitting_description |
Type[ModelFittingDescription] | ModelFittingDescription object describing the fitting steps and model | gibbs_energy_fitting_description |
Returns
Type | Description |
---|---|
pycalphad.Database |