plot.dataplot

plot.dataplot(
    comps,
    phases,
    conds,
    datasets,
    tielines=True,
    ax=None,
    plot_kwargs=None,
    tieline_plot_kwargs=None,
)

Plot datapoints corresponding to the components, phases, and conditions.

Parameters

Name Type Description Default
comps list Names of components to consider in the calculation. required
phases [] Names of phases to consider in the calculation. required
conds dict Maps StateVariables to values and/or iterables of values. required
datasets PickleableTinyDB required
tielines bool If True (default), plot the tie-lines from the data True
ax matplotlib.Axes Default axes used if not specified. None
plot_kwargs dict Additional keyword arguments to pass to the matplotlib plot function for points None
tieline_plot_kwargs dict Additional keyword arguments to pass to the matplotlib plot function for tielines None

Returns

Name Type Description
matplotlib.Axes A plot of phase equilibria points as a figure

Examples

>>> from espei.datasets import load_datasets, recursive_glob
>>> from espei.plot import dataplot
>>> datasets = load_datasets(recursive_glob('.', '*.json'))
>>> my_phases = ['BCC_A2', 'CUMG2', 'FCC_A1', 'LAVES_C15', 'LIQUID']
>>> my_components = ['CU', 'MG' 'VA']
>>> conditions = {v.P: 101325, v.T: (500, 1000, 10), v.X('MG'): (0, 1, 0.01)}
>>> dataplot(my_components, my_phases, conditions, datasets)
Back to top